题目内容

已知函数f(x)=log
1
2
(x+1),当点P(x0,y0)在y=f(x)的图象上移动时,点Q(
x0-t+1
2
,y0)(t∈R)在函数y=g(x)的图象上移动.
(1)若点P坐标为(1,-1),点Q也在y=f(x)的图象上,求t的值;
(2)求函数y=g(x)的解析式;
(3)当t>0时,试探求一个函数h(x)使得f(x)+g(x)+h(x)在限定定义域为[0,1)时有最小值而没有最大值.
(1)当点P坐标为(1,-1),点Q的坐标为(
1-t+1
2
,-1)

∵点Q也在y=f(x)的图象上,∴-1=log
1
2
(-1+
t
2
+1)
,即t=0.
(根据函数y=f(x)的单调性求得t=0,请相应给分)
(2)设Q(x,y)在y=g(x)的图象上
x=
x0-t+1
2
y=y0
,即
x0=2x+t-1
y0=y

而P(x0,y0)在y=f(x)的图象上,∴y0=log
1
2
(x0  +1)

代入得,y=g(x)=log
1
2
(2x+t)
为所求.
(3)h(x)=log
1
2
1-x
2x+t
;或h(x)=log
1
2
3
2
-x
2x+t
等.
如:当h(x)=log
1
2
1-x
2x+t
时,
f(x)+g(x)+h(x)=log
1
2
 (x+1)+log
1
2
(2x+t)+log
1
2
1-x
2x+t
=log
1
2
 (1-x2)

∵1-x2在[0,1)单调递减,∴0<1-x2≤1故log
1
2
(1-x2)≥0

即f(x)+g(x)+h(x)有最小值0,但没有最大值.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网