题目内容
已知△ABC中,A(2,4),B(-1,-2),C(4,3),BC边上的高为AD.(1)求点D和向量的坐标;
(2)设∠ABC=θ,求cosθ的值;(3)求证:2=|
|·|
|.
解析:(1)设D(x,y),则=(x-2,y-4),
=(5,5),
=(x+1,y+2)由
⊥
得,5(x-2)+5(y-4)=0 ①?又B、D、C三点共线 ∴
∥
?即5(x+1)-5(y+2)=0 ②?由①②联立方程组,得x=
,y=
?∴点D(
,
),
=(
,-
).?(2)∵
=(3,6),
=(5,5)?∴cosθ=
.?(3)∵
=(
,-
),
=(
,
),
=(
,
)?∴|
|2=
+
=
=
2 |
|=
|
|=
?∴|
|·|
|=
即:
2=|
|·|
|.

练习册系列答案
相关题目