题目内容

已知函数f(x)=x3+bx2+cx+d,当x=-3和x=1时,f(x)取得极值.
(1)求b,c的值;
(2)若对任意x∈[-4,2],都有f(x)≥-6d2成立,试求d的取值范围.
分析:(1)若函数f(x)在一点取极值,则函数在此点的导数值为0,且在两侧的导数值符号相反.
(2)若在此区间上不等式恒成立,只需要最小值大于-6d2即可.利用导数确定函数的单调性,并利用单调性确定在此区间上的最小值.∈
解答:解:(1)f′(x)=3x2+2bx+c,(2分)
∵当x=-3和x=1时,f(x)取得极值.∴f′(3)=0,f′(1)=0,(4分)
27-6b+c=0
3+2b+c=0
,解得,b=3,c=-9.(6分)
(2)由(1)知f(x)=x3+3x2-9x+d,
f′(x)=3x2+6x-9  f′(x)>0,3x2+6x-9>0,解得 x<-3或x>1,
∵x∈[-4,2]∴f(x)的增减区间、极值、端点值情况如下表:
x -4 (-4,-3) -3 (-3,1) 1 (1,2) 2
f′(x) + 0 - 0 +
f(x) 20+d 递增 极大值27+d 递减 极小值d-5 递增 2+d
对任x∈[-4,2],都有f(x)≥-6d2成立,只需f(x)在[-4,2]上的最小值f(x)min≥-6d2
∴d的取值应满
20+d≥-6d2
d-5≥-6d2
(12分)
解不等式组得,d≤-1或d≥
5
6

∴d的取值范围是(-∞,-1)∪[
5
6
,+∞)(14分)
点评:利用导数确定函数的单调性,利用单调性解决最值问题.注意在极值的两侧导数的符号是相反的.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网