题目内容

已知正三棱锥S-ABC内接于半径为6的球,过侧棱SA及球心O的平面截三棱锥及球面所得截面如右图,则此三棱锥的侧面积为
27
15
27
15
分析:根据图示,这个截面三角形图由原正三棱锥的一条棱,一个侧面三角形的中线和底面正三角形的中线围成,正三棱锥的外接球的球心在底面正三角形的重心上,从而可求得侧面的底边长与高,故可求.
解答:解:根据图示,这个截面三角形图由原正三棱锥的一条棱,一个侧面三角形的中线和底面正三角形的中线围成,正三棱锥的外接球的球心在底面正三角形的重心上,于是有半径R=
2
3
底面中线长
设BC的中点为D,连接SO
∵R=6
∴AD=9,
∴OD=3,SD=
62+32
=
45
,BC=6
3

∴三棱锥的侧面积=
1
2
×
45
×6
3
=27
15

故答案为:27
15
点评:本题考查空间想象能力,关键是要抓住这个截面三角形图由原正三棱锥的一条棱,一个侧面三角形的中线和底面正三角形的中线围成,正三棱锥的外接球的球心在底面正三角形的重心上.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网