题目内容

给出下列四个结论:
①已知△ABC中,三边a,b,c满足(a+b+c)(a+b-c)=3ab,则∠C等于120°.
②若等差数列an的前n项和为Sn,则三点(10,
S10
10
),(100,
S100
100
),(110,
S110
110
)
共线.
③等差数列an中,若S10=30,S20=100,则S30=210.
④设f(x)=
1
2x+
2
,则f(-8)+f(-7)+…+f(0)+…+f(8)+f(9)的值为
9
2
2

其中,结论正确的是 ______.(将所有正确结论的序号都写上)
①由(a+b+c)(a+b-c)=3ab,得到(a+b)2-c2=3ab,化简得:a2+b2-c2=ab,
则cosC=
a2+b2-c2
2ab
=
ab
2ab
=
1
2
,根据C∈(0,180°),得到∠C=60°,所以此选项错误;
②因为
S10
10
=
10a1+
10×9
2
d
10
=a1+
9
2
d,同理
S100
100
=a1+
99
2
d,
S110
110
=a1+
109
2
d,
S100
100
-
S10
10
100-10
=
(a1+
99
2
d)-(a1+
9
2
d)  
90
=
d
2
=
S110
110
-
S100
100
110-100
=
(a1+
109
2
d)-(a1+
99
2
d)   
10
=
d
2

所以三点(10,
S10
10
),(100,
S100
100
),(110,
S110
110
)
共线.此选项正确;
③根据等差数列的性质可知,S10,S20-S10,S30-S20成等差数列,
得到:2(S20-S10)=S10+(S30-S20),将S10=30,S20=100,
代入得:2(100-30)=30+(S30-100),解得:S30=210.此选项正确;
④因为f(x)+f(1-x)=
1
2x+
2
+
1
21-x+
2

=
1
2x+
2
+
2x
2 +
2
2x
=
2
2
(2x+
2
)
+
2x
2+
2
2x

=
2
+2x
1 +
2
2x
=
2
+2x
2
(
2
+2x)
=
2
2

则f(-8)+f(-7)+…+f(0)+…+f(8)+f(9)=
2
2
×9=
9
2
2
.此选项正确.
所以,正确的结论序号有:②③④.
故答案为:②③④
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网