题目内容
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,直线的参数方程为(为参数, ).以原点为极点,以轴正半轴为极轴,与直角坐标系取相同的长度单位,建立极坐标系.设曲线的极坐标方程为.
(Ⅰ)设为曲线上任意一点,求的取值范围;
(Ⅱ)若直线与曲线交于两点, ,求的最小值.
【答案】(1)(2)4.
【解析】试题分析: (1)将曲线C的极坐标方程化为直角坐标方程,将化为关于 的二次函数,求出范围; (2)将直线的参数方程代入曲线C的直角坐标方程中,由直线参数方程的几何意义求出 表达式,求出最小值.
试题解析:(1)将曲线的极坐标方程化为直角坐标方程为,
∵为曲线上任意一点,∴,
∴的取值范围是;
(2)将代入,整理,得,
∴,设方程的两根分别为,
所以,
当时, 取得最小值4.
练习册系列答案
相关题目
【题目】为了调查喜欢旅游是否与性别有关,调查人员就“是否喜欢旅游”这个问题,在火车站分别随机调研了名女性或名男性,根据调研结果得到如图所示的等高条形图.
(1)完成下列 列联表:
喜欢旅游 | 不喜欢旅游 | 估计 | |
女性 | |||
男性 | |||
合计 |
(2)能否在犯错误概率不超过的前提下认为“喜欢旅游与性别有关”.
附:
参考公式:
,其中
【题目】某高中在校学生2 000人,高一年级与高二年级人数相同并且都比高三年级多1人.为了响应市教育局“阳光体育”号召,该校开展了跑步和跳绳两项比赛,要求每人都参加而且只参加其中一项,各年级参与项目人数情况如下表:
年级 项目 | 高一年级 | 高二年级 | 高三年级 |
跑步 | a | b | c |
跳绳 | x | y | z |
其中a∶b∶c=2∶3∶5,全校参与跳绳的人数占总人数的. 为了了解学生对本次活动的满意度,采用分层抽样从中抽取一个200人的样本进行调查,则高二年级中参与跑步的同学应抽取多少人?