ÌâÄ¿ÄÚÈÝ
19£®ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬ÒÔ×ø±êÔµãOΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÒÑÖªÖ±ÏßlÉÏÁ½µãM¡¢NµÄ¼«×ø±ê·Ö±ðΪ£¨6£¬$\frac{¦Ð}{3}$£©¡¢£¨2£¬$\frac{¦Ð}{3}$£©£¬Ô²CµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=3+3cos¦È}\\{y=-\sqrt{3}+3sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£®£¨1£©ÉèPΪÏ߶ÎM¡¢NµÄÖе㣬ÇóµãPµÄÖ±½Ç×ø±ê£»
£¨2£©ÅжÏÏ߶ÎMNµÄ´¹Ö±Æ½·ÖÏßl¡äÓëÔ²CµÄλÖùØϵ£®
·ÖÎö £¨1£©ÀûÓÃ$\left\{\begin{array}{l}{x=¦Ñcos¦È}\\{y=¦Ñsin¦È}\end{array}\right.$°ÑÁ½µãM¡¢NµÄ¼«×ø±ê·Ö±ð»¯ÎªÖ±½Ç×ø±ê£º$£¨3£¬3\sqrt{3}£©$£¬$£¨1£¬\sqrt{3}£©$£®ÀûÓÃÖеã×ø±ê¹«Ê½¿ÉµÃÏ߶ÎMNµÄÖеãP×ø±ê£®
£¨2£©Ô²CµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=3+3cos¦È}\\{y=-\sqrt{3}+3sin¦È}\end{array}\right.$»¯Îª$£¨x-3£©^{2}+£¨y+\sqrt{3}£©^{2}$=9£®¿ÉµÃÔ²Ðİ뾶£®ÀûÓÃkMN•${k}_{{l}^{¡ä}}$=-1£®¿ÉµÃÏ߶ÎMNµÄ´¹Ö±Æ½·ÖÏßl¡ä·½³Ì£®ÀûÓõ㵽ֱÏߵľàÀ빫ʽ¿ÉµÃ£ºÔ²ÐÄC$£¨3£¬-\sqrt{3}£©$µ½Ö±Ïßl¡äµÄ¾àÀëd£¬Óër±È½Ï¼´¿ÉµÃ³ö£®
½â´ð ½â£º£¨1£©Á½µãM¡¢NµÄ¼«×ø±ê·Ö±ðΪ£¨6£¬$\frac{¦Ð}{3}$£©¡¢£¨2£¬$\frac{¦Ð}{3}$£©£¬
»¯ÎªÖ±½Ç×ø±ê£º$£¨3£¬3\sqrt{3}£©$£¬$£¨1£¬\sqrt{3}£©$£®
¡àÏ߶ÎMNµÄÖеãP$£¨2£¬2\sqrt{3}£©$£®
£¨2£©Ô²CµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=3+3cos¦È}\\{y=-\sqrt{3}+3sin¦È}\end{array}\right.$»¯Îª$£¨x-3£©^{2}+£¨y+\sqrt{3}£©^{2}$=9£®
kMN=$\frac{3\sqrt{3}-\sqrt{3}}{3-1}$=$\sqrt{3}$£®
${k}_{{l}^{¡ä}}$=-$\frac{\sqrt{3}}{3}$£®
Ï߶ÎMNµÄ´¹Ö±Æ½·ÖÏßl¡äΪ£º$y-2\sqrt{3}=-\frac{\sqrt{3}}{3}£¨x-2£©$£¬»¯Îªx+$\sqrt{3}$y-8=0£®
¡àÔ²ÐÄC$£¨3£¬-\sqrt{3}£©$µ½Ö±Ïßl¡äµÄ¾àÀëd=$\frac{|3-3-8|}{2}$=4£¾r=3£®
¡àÏ߶ÎMNµÄ´¹Ö±Æ½·ÖÏßl¡äÓëÔ²CµÄλÖùØϵÊÇÏàÀ룮
µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢Ô²µÄ²ÎÊý·½³Ì¡¢µãµ½Ö±ÏߵľàÀ빫ʽ¡¢Ö±ÏßÓëÔ²µÄλÖù«Ê½£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
A£® | $y=¡À\sqrt{2}x$ | B£® | $y=¡À\frac{{\sqrt{3}}}{3}x$ | C£® | $y=¡À\frac{{\sqrt{2}}}{2}x$ | D£® | $y=¡À\sqrt{3}x$ |