题目内容

(本小题满分12分)

     如图,在直四棱柱ABCD-ABCD中,底面ABCD为等腰梯形,AB//CD,AB=4, BC=CD=2,  AA=2,  E、E、F分别是棱AD、AA、AB的中点。

(1)   证明:直线EE//平面FCC

(2)   求二面角B-FC-C的余弦值。 

 

 

 

 

 

【答案】

 

(1)在直四棱柱ABCD-ABCD中,取A1B1的中点F1

 

 

连接A1D,C1F1,CF1,因为AB=4, CD=2,且AB//CD,

所以CDA1F1,A1F1CD为平行四边形,所以CF1//A1D,

又因为E、E分别是棱AD、AA的中点,所以EE1//A1D,

所以CF1//EE1,又因为平面FCC平面FCC

所以直线EE//平面FCC.

(2)因为AB=4, BC=CD=2, 、F是棱AB的中点,所以BF=BC=CF,△BCF为正三角形,取CF的中点O,则OB⊥CF,又因为直四棱柱ABCD-ABCD中,CC1⊥平面ABCD,所以CC1⊥BO,所以OB⊥平面CC1F,过O在平面CC1F内作OP⊥C1F,垂足为P,连接BP,则∠OPB为二面角B-FC-C的一个平面角, 在△BCF为正三角形中,,在Rt△CC1F中, △OPF∽△CC1F,∵,

在Rt△OPF中,,,所以二面角B-FC-C的余弦值为.

 

【解析】略

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网