题目内容
【题目】已知椭圆:()的离心率,左、右焦点分别为、,直线过点且垂直于椭圆的长轴,动直线垂直于点,线段的垂直平分线交于点.
(1)求点的轨迹的方程;
(2)当直线与椭圆相切,交于点,,当时,求的直线方程.
【答案】(1);(2)
【解析】分析:1)利用椭圆离心率可知利用抛物线定义求出点的轨迹的方程;
(2)显然当AB斜率不存在时,不符合条件.当AB斜率存在时,设AB:y=kx+m,联立直线与椭圆方程,设A(x1,y1),B(x2,y2)通过韦达定理结合OA⊥OB,转化求解即可.
详解:(1)由,得,,故,,
依条件可知,
∴的轨迹是以为准线,为焦点的抛物线,
∴的方程为.
(2)显然当斜率不存在时,不符合条件.
当斜率存在时,设:,
由消得,
∵与相切,
∴,得,①
又由消得,
设,,则,,
且有得,,
∵,
∴ ,
得,
联立①,得,故方程为.
【题目】上饶市委、市政府在上饶召开上饶市全面展开新能源工程动员大会,会议动员各方力量,迅速全面展开新能源工程工作.某企业响应号召,对现有设备进行改造,为了分析设备改造前后的效果,现从设备改造前后生产的大量产品中各抽取了200件产品作为样本,检测一项质量指标值,若该项质量指标值落在内的产品视为合格品,否则为不合格品.图1是设备改造前的样本的频率分布直方图,表1是设备改造后的样本的频数分布表.
(1)完成列联表,并判断是否有的把握认为该企业生产的这种产品的质量指标值与设备改造有关;
设备改造前 | 设备改造后 | 合计 | |
合格品 | |||
不合格品 | |||
合计 |
(2)根据图1和表1提供的数据,试从产品合格率的角度对改造前后设备的优劣进行比较;
(3)根据市场调查,设备改造后,每生产一件合格品企业可获利200元,一件不合格品亏损150元,用频率估计概率,则生产1000件产品企业大约能获利多少元?
附:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
.
【题目】2022年北京冬奥会的申办成功与“3亿人上冰雪”口号的提出,将冰雪这个冷项目迅速炒“热”.北京某综合大学计划在一年级开设冰球课程,为了解学生对冰球运动的兴趣,随机从该校一年级学生中抽取了100人进行调查,其中女生中对冰球运动有兴趣的占,而男生有10人表示对冰球运动没有兴趣额.
(1)完成列联表,并回答能否有的把握认为“对冰球是否有兴趣与性别有关”?
有兴趣 | 没兴趣 | 合计 | |
男 | 55 | ||
女 | |||
合计 |
(2)若将频率视为概率,现再从该校一年级全体学生中,采用随机抽样的方法每次抽取1名学生,抽取5次,记被抽取的5名学生中对冰球有兴趣的人数为,若每次抽取的结果是相互独立的,求的分布列,期望和方差.
附表:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |