题目内容
如图,已知椭圆的右顶点为A(2,0),点P(2e,)在椭圆上(e为椭圆的离心率).
(1)求椭圆的方程;
(2)若点B,C(C在第一象限)都在椭圆上,满足,且,求实数λ的值.
(1),(2).
解析试题分析:(1)求椭圆方程,基本方法是待定系数法.关键是找全所需条件. 椭圆中三个未知数的确定只需两个独立条件,本题椭圆经过两点,就是两个独立条件,(2)直线与椭圆位置关系问题就要从其位置关系出发,本题中和条件一是平行关系,二是垂直关系.设直线的斜率就可表示点及点再利用就可列出关于斜率及λ的方程组.得到,可利用类比得到由两式相除可解得代入可得
试题解析:(1)由条件,代入椭圆方程,
得 2分
所以椭圆的方程为 5分
(2)设直线OC的斜率为,
则直线OC方程为,
代入椭圆方程即,
得
则 7分
又直线AB方程为
代入椭圆方程
得
则 9分
在第一象限, 12分
由得 15分
16分
考点:椭圆方程,直线与椭圆位置关系.
练习册系列答案
相关题目