题目内容
(06年江西卷理)若a>0,b>0,则不等式-b<<a等价于( )
A.<x<0或0<x< B.-<x< C.x<-或x> D.x<或x>
答案:D
解析:
故选D
(06年江西卷理)设O为坐标原点,F为抛物线y2=4x的焦点,A是抛物线上一点,若=-4则点A的坐标是( )
A.(2,±2) B. (1,±2) C.(1,2)D.(2,2)
(06年江西卷理)对于R上可导的任意函数f(x),若满足(x-1)³0,则必有( )
A. f(0)+f(2)<2f(1) B. f(0)+f(2)£2f(1)
C. f(0)+f(2)³2f(1) D. f(0)+f(2)>2f(1)
(06年江西卷理)(12分)
已知函数f(x)=x3+ax2+bx+c在x=-与x=1时都取得极值
(1)求a、b的值与函数f(x)的单调区间
(2)若对xÎ〔-1,2〕,不等式f(x)<c2恒成立,求c的取值范围。
如图,在三棱锥A-BCD中,侧面ABD、ACD
是全等的直角三角形,AD是公共的斜边,
且AD=,BD=CD=1,另一个侧面是正三角形
(1)求证:AD^BC
(2)求二面角B-AC-D的大小
(3)在直线AC上是否存在一点E,使ED与面BCD
成30°角?若存在,确定E的位置;若不存在,说明理由。