ÌâÄ¿ÄÚÈÝ
̽¾¿º¯Êýf£¨x£©=2x+
-3ÔÚÇø¼ä£¨0£¬+¡Þ£©ÉϵÄ×îСֵ£¬²¢È·¶¨È¡µÃ×îСֵʱxµÄÖµ£®ÁбíÈçÏ£º
£¨1£©¹Û²ì±íÖÐyÖµËæxÖµ±ä»¯Ç÷ÊƵÄÌص㣬ÇëÄãÖ±½Óд³öº¯Êýf£¨x£©=2x+
-3ÔÚÇø¼ä£¨0£¬+¡Þ£©Éϵĵ¥µ÷Çø¼ä£¬²¢Ö¸³öf£¨x£©µÄ×îСֵ¼°´ËʱxµÄÖµ£®
£¨2£©Óõ¥µ÷ÐԵĶ¨ÒåÖ¤Ã÷º¯Êýf£¨x£©=2x+
-3ÔÚÇø¼ä£¨0£¬2]Éϵĵ¥µ÷ÐÔ£»
£¨3£©É躯Êýf£¨x£©=2x+
-3ÔÚÇø¼ä£¨0£¬a]ÉϵÄ×îСֵΪg£¨a£©£¬Çóg£¨a£©µÄ±í´ïʽ£®
8 |
x |
x | ¡ | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | ¡ |
y | ¡ | 14 | 7 | 5.33 | 5.11 | 5.01 | 5 | 5.01 | 5.04 | 5.08 | 5.67 | 7 | 8.6 | 12.14 | ¡ |
8 |
x |
£¨2£©Óõ¥µ÷ÐԵĶ¨ÒåÖ¤Ã÷º¯Êýf£¨x£©=2x+
8 |
x |
£¨3£©É躯Êýf£¨x£©=2x+
8 |
x |
·ÖÎö£º£¨1£©ÓɱíÖпÉÖªf£¨x£©ÔÚ£¨0£¬2]Ϊ¼õº¯Êý£¬[2£¬+¡Þ£©ÎªÔöº¯Êý£¬²¢ÇÒµ±x=2ʱ£¬f£¨x£©È¡µÃ×îСֵ£®
£¨2£©Ö¤Ã÷£ºÉè0£¼x1£¼x2¡Ü2£¬¼ÆËãf£¨x1£©-f£¨x2£©=
£¾0£¬¿ÉµÃf£¨x£©ÔÚ£¨0£¬2]Ϊ¼õº¯Êý£®
£¨3£©Óɺ¯Êýf£¨x£©ÔÚÇø¼ä£¨0£¬2]Éϵ¥µ÷µÝ¼õ£¬ÔÚÇø¼ä[2£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬·Ö¢Ùµ±0£¼a£¼2ʱ¡¢¢Úµ±a¡Ý2ʱ£¬Á½ÖÖÇé¿ö·Ö±ðÇóµÃf£¨x£©min£¬´Ó¶øµÃ³ö½áÂÛ
£¨2£©Ö¤Ã÷£ºÉè0£¼x1£¼x2¡Ü2£¬¼ÆËãf£¨x1£©-f£¨x2£©=
2(x1-x2)(x1x2-4) |
x1x2 |
£¨3£©Óɺ¯Êýf£¨x£©ÔÚÇø¼ä£¨0£¬2]Éϵ¥µ÷µÝ¼õ£¬ÔÚÇø¼ä[2£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬·Ö¢Ùµ±0£¼a£¼2ʱ¡¢¢Úµ±a¡Ý2ʱ£¬Á½ÖÖÇé¿ö·Ö±ðÇóµÃf£¨x£©min£¬´Ó¶øµÃ³ö½áÂÛ
½â´ð£º½â£º£¨1£©ÓɱíÖпÉÖªf£¨x£©ÔÚ£¨0£¬2]Ϊ¼õº¯Êý£¬
[2£¬+¡Þ£©ÎªÔöº¯Êý£¬²¢ÇÒµ±x=2ʱ£¬f£¨x£©min=5£®
£¨2£©Ö¤Ã÷£ºÉè0£¼x1£¼x2¡Ü2£¬
ÒòΪf£¨x1£©-f£¨x2£©=2x1+
-3-£¨2x2+
-3£©=2£¨x1-x2£©+
=
£¬
ÒòΪ0£¼x1£¼x2¡Ü2£¬ËùÒÔx1-x2£¼0£¬0£¼x1x2£¼4£¬¼´x1x2-4£¼0£¬
ËùÒÔf£¨x1£©-f£¨x2£©£¾0£¬¼´f£¨x1£©£¾f£¨x2£©£¬ËùÒÔf£¨x£©ÔÚ£¨0£¬2]Ϊ¼õº¯Êý£®
£¨3£©ÓÉ£¨2£©¿ÉÖ¤£ºº¯Êýf£¨x£©=2x+
-3ÔÚÇø¼ä£¨0£¬2]Éϵ¥µ÷µÝ¼õ£¬ÔÚÇø¼ä[2£¬+¡Þ£©Éϵ¥µ÷µÝÔö£®
Ôò¢Ùµ±0£¼a£¼2ʱ£¬£¨0£¬a]⊆£¨0£¬2]£¬ËùÒÔº¯Êýf£¨x£©=2x+
-3ÔÚÇø¼ä£¨0£¬a]Éϵ¥µ÷µÝ¼õ£¬
¹Êf£¨x£©min=f£¨a£©=2a+
-3£®
¢Úµ±a¡Ý2ʱ£¬º¯Êýf£¨x£©=2x+
-3ÔÚÇø¼ä£¨0£¬2]Éϵ¥µ÷µÝ¼õ£¬[2£¬a]Éϵ¥µ÷µÝÔö£¬
¹Êf£¨x£©min=f£¨2£©=5£®
×ÛÉÏËùÊö£¬º¯Êýf£¨x£©=2x+
-3ÔÚÇø¼ä£¨0£¬a]ÉϵÄ×îСֵΪ g£¨a£©=
£®
[2£¬+¡Þ£©ÎªÔöº¯Êý£¬²¢ÇÒµ±x=2ʱ£¬f£¨x£©min=5£®
£¨2£©Ö¤Ã÷£ºÉè0£¼x1£¼x2¡Ü2£¬
ÒòΪf£¨x1£©-f£¨x2£©=2x1+
8 |
x1 |
8 |
x2 |
8(x2-x1) |
x1x2 |
2(x1-x2)(x1x2-4) |
x1x2 |
ÒòΪ0£¼x1£¼x2¡Ü2£¬ËùÒÔx1-x2£¼0£¬0£¼x1x2£¼4£¬¼´x1x2-4£¼0£¬
ËùÒÔf£¨x1£©-f£¨x2£©£¾0£¬¼´f£¨x1£©£¾f£¨x2£©£¬ËùÒÔf£¨x£©ÔÚ£¨0£¬2]Ϊ¼õº¯Êý£®
£¨3£©ÓÉ£¨2£©¿ÉÖ¤£ºº¯Êýf£¨x£©=2x+
8 |
x |
Ôò¢Ùµ±0£¼a£¼2ʱ£¬£¨0£¬a]⊆£¨0£¬2]£¬ËùÒÔº¯Êýf£¨x£©=2x+
8 |
x |
¹Êf£¨x£©min=f£¨a£©=2a+
8 |
a |
¢Úµ±a¡Ý2ʱ£¬º¯Êýf£¨x£©=2x+
8 |
x |
¹Êf£¨x£©min=f£¨2£©=5£®
×ÛÉÏËùÊö£¬º¯Êýf£¨x£©=2x+
8 |
x |
|
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éº¯ÊýµÄµ¥µ÷ÐÔµÄÅжϺÍÖ¤Ã÷£¬ÀûÓú¯ÊýµÄµ¥µ÷ÐÔÇóº¯ÊýµÄ×îÖµ£¬ÌåÏÖÁË·ÖÀàÌÖÂÛµÄÊýѧ˼Ï룬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿