题目内容
已知椭圆C长轴的两个顶点为A(-2,0),B(2,0),且其离心率为
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/2014082402171913315956.png)
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若N是直线x=2上不同于点B的任意一点,直线AN与椭圆C交于点Q,设直线QB与以NB为直径的圆的一个交点为M(异于点B),求证:直线NM经过定点.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021719118453.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/2014082402171913315956.png)
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若N是直线x=2上不同于点B的任意一点,直线AN与椭圆C交于点Q,设直线QB与以NB为直径的圆的一个交点为M(异于点B),求证:直线NM经过定点.
(Ⅰ)
;(Ⅱ)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021719149889.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021719165516.png)
试题分析:(Ⅰ)根据斜率公式,有斜率乘积等于
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021719180327.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021719196432.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021719243429.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021719258310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021719274333.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021719289406.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021719508442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021719633399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021719648716.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021719679513.png)
试题解析:(Ⅰ)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021719695568.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021719726582.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021719742765.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021719757435.png)
整理得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021719773289.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021719149889.png)
(Ⅱ)设点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021719804815.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021719243429.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021719835811.png)
解方程组
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240217198671204.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021719258310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240217198981028.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021719929636.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021719945951.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021719960195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240217199761105.png)
从而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240217199911095.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021720007547.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240217200231277.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021720038235.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021719289406.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021719508442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021719633399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021719960195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021719648716.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021720116542.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021720147709.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021720147650.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021719165516.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目