搜索
题目内容
过抛物线
的焦点F作一直线l交抛物线于A、B两点,以AB为直径的圆与该抛物线的准线l的位置关系为( )
A. 相交 B. 相离 C. 相切 D. 不能确定
试题答案
相关练习册答案
C
试题分析:设圆心到准线的距离为
,点
到准线的距离为
,点
到准线的距离为
,则以AB为直径
的圆的半径
,由抛物线的性质(抛物线上的点到准线和焦点的距离相等)得,
,所以圆和准线相切,选C.
练习册系列答案
小学拓展课堂突破系列答案
字词句段篇章语言训练系列答案
口算应用题整合集训系列答案
小学升初中教材学法指导系列答案
小学生奥数训练营系列答案
中考红8套系列答案
全真模拟卷小学毕业升学总复习系列答案
全品高考短平快系列答案
初中学业会考仿真卷系列答案
初中总复习全优设计系列答案
相关题目
已知中心在原点O,焦点在x轴上,离心率为
的椭圆过点
(1)求椭圆的方程;
(2)设不过原点O的直线
与该椭圆交于P,Q两点,满足直线
的斜率依次成等比数列,
求
面积的取值范围.
设抛物线
的焦点为
,准线为
,
,以
为圆心的圆
与
相切于点
,
的纵坐标为
,
是圆
与
轴除
外的另一个交点.
(I)求抛物线
与圆
的方程;
(II)过
且斜率为
的直线
与
交于
两点,求
的面积.
已知椭圆C长轴的两个顶点为A(-2,0),B(2,0),且其离心率为
.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若N是直线x=2上不同于点B的任意一点,直线AN与椭圆C交于点Q,设直线QB与以NB为直径的圆的一个交点为M(异于点B),求证:直线NM经过定点.
以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线
的参数方程为
(t为参数,0<a<
),曲线C的极坐标方程为
.
(1)求曲线C的直角坐标方程;
(2)设直线l与曲线C相交于A、B两点,当a变化时,求|AB|的最小值.
已知在直角坐标系
中,曲线
的参数方程为:
(
为参数),在极坐标系(与直角坐标系
取相同的长度单位,且以原点
为极点,以
轴正半轴为极轴)中,直线
的极坐标方程为:
.
(Ⅰ)写出曲线
和直线
在直角坐标系下的方程;
(II)设点
是曲线
上的一个动点,求它到直线
的距离的最小值.
点
是双曲线
与圆
的一个交点,且
,其中
分别为双曲线C
1
的左右焦点,则双曲线
的离心率为( )
A.
B.
C.
D.
已知抛物线
(p>0)的焦点F恰好是双曲线
的右焦点,且两条曲线的交点的连线过F,则该双曲线的离心率为( )
A.
B.2
C.
+1
D.
-1
已知抛物线
的准线过双曲线
的右焦点,则双曲线的离心率为
.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总