题目内容
已知过点P(2,2)的直线与圆(x-1)2+y2=5相切,且与直线ax-y+1=0垂直,则a=( )
A.-
| B.1 | C.2 | D.
|
因为点P(2,2)满足圆(x-1)2+y2=5的方程,所以P在圆上,
又过点P(2,2)的直线与圆(x-1)2+y2=5相切,且与直线ax-y+1=0垂直,
所以切点与圆心连线与直线ax-y+1=0平行,
所以直线ax-y+1=0的斜率为:a=
=2.
故选C.
又过点P(2,2)的直线与圆(x-1)2+y2=5相切,且与直线ax-y+1=0垂直,
所以切点与圆心连线与直线ax-y+1=0平行,
所以直线ax-y+1=0的斜率为:a=
2-0 |
2-1 |
故选C.

练习册系列答案
相关题目