题目内容
【题目】已知四棱锥的底面是菱形,底面,是上的任意一点
求证:平面平面
设,求点到平面的距离
在的条件下,若,求与平面所成角的正切值
【答案】(1)见解析(2)(3)
【解析】
(1)由平面,得出,由菱形的性质得出,利用直线与平面垂直的判定定理得出平面,再利用平面与平面垂直的判定定理可证出结论;
(2)先计算出三棱锥的体积,并计算出的面积,利用等体积法计算出三棱锥的高,即为点到平面的距离;
(3)由(1)平面,于此得知为直线与平面所成的角,由,得出平面,于此计算出,然后在中计算出即可。
(1)平面,平面,,
四边形是菱形,,
平面;
又平面,所以平面平面.
(2)设,连结,则,
四边形是菱形,,
,
,
设点到平面的距离为平面,,
,解得,
即点到平面的距离为;
(3)由(1)得平面,为与平面所成角,
平面,
,与平面所成角的正切值为。
【题目】为了解学生暑假阅读名著的情况,一名教师对某班级的所有学生进行了调查,调查结果如下表.
男生 | |||||
女生 |
()从这班学生中任选一名男生,一名女生,求这两名学生阅读名著本数之和为的概率?
()若从阅读名著不少于本的学生中任选人,设选到的男学生人数为,求随机变量的分布列和数学期望.
()试判断男学生阅读名著本数的方差与女学生阅读名著本数的方程的大小.
【题目】某届奥运会上,中国队以26金18银26铜的成绩称金牌榜第三、奖牌榜第二,某校体育爱好者在高三年级一班至六班进行了“本届奥运会中国队表现”的满意度调查结果只有“满意”和“不满意”两种,从被调查的学生中随机抽取了50人,具体的调查结果如表:
班号 | 一班 | 二班 | 三班 | 四班 | 五班 | 六班 |
频数 | 5 | 9 | 11 | 9 | 7 | 9 |
满意人数 | 4 | 7 | 8 | 5 | 6 | 6 |
(1)在高三年级全体学生中随机抽取一名学生,由以上统计数据估计该生持满意态度的概率;
(2)若从一班至二班的调查对象中随机选取4人进行追踪调查,记选中的4人中对“本届奥运会中国队表现”不满意的人数为,求随机变量的分布列及数学期望.