题目内容
对于函数y=f(x)(x∈R),给出下列命题:
(1)在同一直角坐标系中,函数y=f(1-x)与y=f(x-1)的图象关于直线x=0对称;
(2)若f(1-x)=f(x-1),则函数y=f(x)的图象关于直线x=1对称;
(3)若f(1+x)=f(x-1),则函数y=f(x)是周期函数;
(4)若f(1-x)=-f(x-1),则函数y=f(x)的图象关于点(0,0)对称.
其中所有正确命题的序号是
(1)在同一直角坐标系中,函数y=f(1-x)与y=f(x-1)的图象关于直线x=0对称;
(2)若f(1-x)=f(x-1),则函数y=f(x)的图象关于直线x=1对称;
(3)若f(1+x)=f(x-1),则函数y=f(x)是周期函数;
(4)若f(1-x)=-f(x-1),则函数y=f(x)的图象关于点(0,0)对称.
其中所有正确命题的序号是
(3)(4)
(3)(4)
.分析:(1)函数y=f(x-1)与y=f(1-x)的图象可以由f(x)与y=f(-x)的图象向右移了一个单位而得到,从而函数y=f(x-1)与y=f(1-x)的图象关于直线x=1对称;
(2)若f(1-x)=f(x-1),令t=1-x,有f(t)=f(-t),则函数y=f(x)的图象关于直线x=0对称;
(3)若f(1+x)=f(x-1),则f(x+2)=f[(x+1)+1]=f(x),函数y=f(x)是以2为周期的周期函数;
(4)若f(1-x)=-f(x-1),则可得f(-t)=-f(t),即函数f(x)为奇函数,从而可得函数y=f(x)的图象关于点(0,0)对称.
(2)若f(1-x)=f(x-1),令t=1-x,有f(t)=f(-t),则函数y=f(x)的图象关于直线x=0对称;
(3)若f(1+x)=f(x-1),则f(x+2)=f[(x+1)+1]=f(x),函数y=f(x)是以2为周期的周期函数;
(4)若f(1-x)=-f(x-1),则可得f(-t)=-f(t),即函数f(x)为奇函数,从而可得函数y=f(x)的图象关于点(0,0)对称.
解答:解:(1):∵f(x)与y=f(-x)的图象关于直线x=0对称,函数y=f(x-1)与y=f(1-x)的图象可以由f(x)与y=f(-x)的图象向右移了一个单位而得到,从而可得函数y=f(x-1)与y=f(1-x)的图象关于直线x=1对称;故(1)错误
(2)若f(1-x)=f(x-1),令t=1-x,有f(t)=f(-t),则函数y=f(x)的图象关于直线x=0对称;故(2)错误
(3)若f(1+x)=f(x-1),则f(x+2)=f[(x+1)+1]=f(x),函数y=f(x)是以2为周期的周期函数;故(3)正确
(4)若f(1-x)=-f(x-1),则可得f(-t)=-f(t),即函数f(x)为奇函数,从而可得函数y=f(x)的图象关于点(0,0)对称.故(4)正确
故答案为(3)(4)
(2)若f(1-x)=f(x-1),令t=1-x,有f(t)=f(-t),则函数y=f(x)的图象关于直线x=0对称;故(2)错误
(3)若f(1+x)=f(x-1),则f(x+2)=f[(x+1)+1]=f(x),函数y=f(x)是以2为周期的周期函数;故(3)正确
(4)若f(1-x)=-f(x-1),则可得f(-t)=-f(t),即函数f(x)为奇函数,从而可得函数y=f(x)的图象关于点(0,0)对称.故(4)正确
故答案为(3)(4)
点评:本题考点是两个函数图象的对称性,考查根据已知函数图象的性质来判断与之相关函数性质的能力,即图象变换的能力,规律性固定,学习时要注意总结.
练习册系列答案
相关题目