题目内容
已知函数.
(1)当时恒有意义,求实数的取值范围.
(2)是否存在这样的实数使得函数在区间[1,2]上为减函数,并且最大值为1,如果存在,试求出的值;如果不存在,请说明理由.
(1)当时恒有意义,求实数的取值范围.
(2)是否存在这样的实数使得函数在区间[1,2]上为减函数,并且最大值为1,如果存在,试求出的值;如果不存在,请说明理由.
⑴(0,1)∪(1,);⑵不存在。
解:(1)由假设,>0,对一切恒成立,
显然,函数g(x)= 在[0,2]上为减函数,从而g(2)=>0得到<
∴的取值范围是(0,1)∪(1,)
(2)假设存在这样的实数,由题设知,即=1
∴=此时
当时,没有意义,故这样的实数不存在.
显然,函数g(x)= 在[0,2]上为减函数,从而g(2)=>0得到<
∴的取值范围是(0,1)∪(1,)
(2)假设存在这样的实数,由题设知,即=1
∴=此时
当时,没有意义,故这样的实数不存在.
练习册系列答案
相关题目