题目内容

【题目】已知曲线C的极坐标方程是ρ6sinθ,建立以极点为坐标原点,极轴为x轴正半轴的平面直角坐标系.直线l的参数方程是(t为参数)

(1)求曲线C的直角坐标方程;

(2)若直线l与曲线C相交于AB两点,且|AB|=,求直线的斜率k

【答案】(1) (2)

【解析】

1)运用xρcosθyρsinθ,即可将曲线C的极坐标方程化为直角坐标方程;

2)方法1:化直线的参数方程为普通方程,再由条件,即可得到直线方程,再求出圆心到直线的距离,结合|AB|=,利用勾股定理,即可求出直线的斜率;方法2:直接把直线的参数方程代入圆,运用韦达定理,计算,结合|AB|=,即可得到斜率.

解:(1)由曲线的极坐标方程是,得直角坐标方程为

2)把直线的参数方程为参数),

代入圆的方程得

化简得

两点对应的参数分别是,则

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网