题目内容

【题目】已知函数f(x)=x﹣ +alnx(a∈R).
(1)若函数f(x)在[1,+∞)上单调递增,求实数a的取值范围;
(2)已知g(x)= x2+(m﹣1)x+ ,m≤﹣ ,h(x)=f(x)+g(x),当时a=1,h(x)有两个极值点x1 , x2 , 且x1<x2 , 求h(x1)﹣h(x2)的最小值.

【答案】
(1)解:∵f(x)=x﹣ +alnx,

∴f′(x)=1+ +

∵f(x)在[1,+∞)上单调递增,

∴f′(x)=1+ + ≥0在[1,+∞)上恒成立,

∴a≥﹣(x+ )在[1,+∞)上恒成立,

∵y=﹣x﹣ 在[1,+∞)上单调递减,

∴y≤﹣2,

∴a≥﹣2


(2)解:h(x)=f(x)+g(x)=lnx+ x2+mx,其定义域为(0,+∞),

求导得,h′(x)=

若h′(x)=0两根分别为x1,x2,则有x1x2=1,x1+x2=﹣m,

∴x2= ,从而有m=﹣x1

∵m≤﹣ ,x1<x2

∴x1∈[ ,1]

则h(x1)﹣h(x2)=h(x1)﹣h( )=2lnx1+ )+(﹣x1 )(x1 ),

令φ(x)=2lnx﹣ (x2 ),x∈[ ,1].

则[h(x1)﹣h(x2)]min=φ(x)min

φ′(x)=﹣

当x∈( ,1]时,φ′(x)<0,

∴φ(x)在[ ,1]上单调递减,

φ(x)min=φ(1)=0,

∴h(x1)﹣h(x2)的最小值为0


【解析】(1)利用函数单调性和导数之间的关系进行求解即可.(2)求出函数h(x)的表达式,求出函数h(x)的导数,利用函数极值,最值和导数之间的关系进行求解.
【考点精析】掌握函数的极值与导数是解答本题的根本,需要知道求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网