题目内容
【题目】数列{an}的前n项和记为Sn , a1=2,an+1=Sn+2(n∈N*).
(Ⅰ)求{an}的通项公式;
(Ⅱ)求数列{nan}的前n项和Tn .
【答案】解:(Ⅰ)由a1=2,an+1=Sn+2(n∈N*),①
an=Sn﹣1+2(n≥2),②…(2分)
①﹣②,得 (n≥2).
又由a2=S1+2=4,得 .
所以 (n≥1),数列{an}是以2为首项,2为公比的等比数列,故 .
(Ⅱ)由(Ⅰ),得 ,③
2Tn=1×22+2×33+3×24+…+n×2n+1,④
③﹣④,得 .
所以
【解析】(Ⅰ)由已知利用递推公式可得到等于2,进而得证数列{an}是等比数列即可求出通项公式。(Ⅱ)整理数列{nan}的前n项和Tn,两边乘以公比与原式相减即得 Tn。
【考点精析】根据题目的已知条件,利用数列的前n项和和数列的通项公式的相关知识可以得到问题的答案,需要掌握数列{an}的前n项和sn与通项an的关系;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.
练习册系列答案
相关题目