题目内容

【题目】若函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,则f(x)的最大值为

【答案】16
【解析】解:∵函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,
∴f(﹣1)=f(﹣3)=0且f(1)=f(﹣5)=0,
即[1﹣(﹣3)2][(﹣3)2+a(﹣3)+b]=0且[1﹣(﹣5)2][(﹣5)2+a(﹣5)+b]=0,
解之得
因此,f(x)=(1﹣x2)(x2+8x+15)=﹣x4﹣8x3﹣14x2+8x+15,
求导数,得f′(x)=﹣4x3﹣24x2﹣28x+8,
令f′(x)=0,得x1=﹣2﹣ ,x2=﹣2,x3=﹣2+
当x∈(﹣∞,﹣2﹣ )时,f′(x)>0;当x∈(﹣2﹣ ,﹣2)时,f′(x)<0;
当x∈(﹣2,﹣2+ )时,f′(x)>0; 当x∈(﹣2+ ,+∞)时,f′(x)<0
∴f(x)在区间(﹣∞,﹣2﹣ )、(﹣2,﹣2+ )上是增函数,在区间(﹣2﹣ ,﹣2)、(﹣2+ ,+∞)上是减函数.
又∵f(﹣2﹣ )=f(﹣2+ )=16,
∴f(x)的最大值为16.
故答案为:16.
由题意得f(﹣1)=f(﹣3)=0且f(1)=f(﹣5)=0,由此求出a=8且b=15,由此可得f(x)=﹣x4﹣8x3﹣14x2+8x+15.利用导数研究f(x)的单调性,可得f(x)在区间(﹣∞,﹣2﹣ )、(﹣2,﹣2+ )上是增函数,在区间(﹣2﹣ ,﹣2)、(﹣2+ ,+∞)上是减函数,结合f(﹣2﹣ )=f(﹣2+ )=16,即可得到f(x)的最大值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网