题目内容
【题目】从某批产品中,有放回地抽取产品两次,每次随机抽取1件,假设事件A:“取出的2件产品中至多有1件是二等品”,其概率P(A)=0.96.
(1)求从该批产品中任取1件是二等品的概率p.
(2)若该批产品共100件,从中无放回抽取2件产品,ξ表示取出的2件产品中二等品的件数.求ξ的分布列.
【答案】(1)0.2.(2)见解析
【解析】试题分析:(1)分析题意可知事件A可分为两种情况:“取出的2件产品中无二等品”, “取出的2件产品中恰有1件二等品”,然后列式求解即可(2)无放回抽取可得此问题为超几何分布,先写出ξ的可能取值为0,1,2,然后对应写出概率列出分布列即可
试题解析:
解:(1)记A0表示事件“取出的2件产品中无二等品”,A1表示事件“取出的2件产品中恰有1件二等品”,
则A0,A1互斥,且A=A0∪A1,故P(A)=P(A0∪A1)=P(A0)+P(A1)=(1-p)2+p(1-p) =1-p2,
即0.96=1-p2.解得p1=0.2,p2=-0.2(舍去).
故从该批产品中任取1件是二等品的概率为0.2.
(2)ξ的可能取值为0,1,2,
该批产品共100件,由(1)知其二等品有100×0.2=20(件),
故, , .
所以ξ的分布列为
ξ | 0 | 1 | 2 |
P |
【题目】交强险是车主必须为机动车购买的险种,若普通座以下私家车投保交强险第一年的费用(基准保费)统一为元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如下表:
某机构为了研究某一品牌普通座以下私家车的投保情况,随机抽取了辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:
类型 | ||||||
数量 | 10 | 5 | 5 | 20 | 15 | 5 |
以这辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:
(Ⅰ)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定, ,记为某同学家里的一辆该品牌车在第四年续保时的费用,求的分布列与数学期望;(数学期望值保留到个位数字)
(Ⅱ)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损元,一辆非事故车盈利元:
①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至少有一辆事故车的概率;
②若该销售商一次购进辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.