题目内容
(2013•闵行区二模)用二分法研究方程x3+3x-1=0的近似解x=x0,借助计算器经过若干次运算得下表:
若精确到0.1,至少运算n次,则n+x0的值为
运算次数 | 1 | … | 4 | 5 | 6 | … |
解的范围 | (0,0.5) | … | (0.3125,0.375) | (0.3125,0.34375) | (0.3125,0.328125) | … |
5.3
5.3
.分析:区间长度要小于精度0.1,且区间端点对应的函数值的符号相反,满足此两个条件即可求出n和x0的值.
解答:解:根据运算得下表:
因为f(0.3125)<0,且f(0.34375>0,
满足 f(0.3125)×f(0.34375)<0,
且区间长度:0.34375-0.3125=0.03125<0.1(精度),
∴n=5,x0=0.3,n+x0=5.3.
故答案为:5.3.
运算次数 | 1 | … | 4 | 5 | 6 | … |
解的范围 | (0,0.5) | … | (0.3125,0.375) | (0.3125,0.34375) | (0.3125,0.328125) | … |
满足 f(0.3125)×f(0.34375)<0,
且区间长度:0.34375-0.3125=0.03125<0.1(精度),
∴n=5,x0=0.3,n+x0=5.3.
故答案为:5.3.
点评:不断将区间(0,0.5)二等分时,每次都取端点函数值异号的区间,直到区间长度小于或等于题目所给的精度为止.
练习册系列答案
相关题目