题目内容
【题目】在平面直角坐标系中,已知曲线的参数方程为,(为参数),点.以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.
(1)试判断点是否在直线上,并说明理由;
(2)设直线与曲线交于点,,求的值.
【答案】(1)见解析;(2)
【解析】
(1)把直线的极坐标方程为化为直角坐标方程,代入检验即可;
(2)把曲线的参数方程化为普通方程,再把直线l的参数方程代入普通方程可得,借助韦达定理可得结果.
(1)由得,
即直线的直角坐标方程为,
经检验满足方程,
所以点在直线上.
(2)曲线的参数方程为(为参数),
所以曲线的普通方程为.
由(1)可得直线的参数方程为(为参数),
将参数方程代入曲线得,
设,对应的参数为,,则,,
所以,
所以的值为.
【题目】近年来,我国工业经济发展迅速,工业增加值连年攀升,某研究机构统计了近十年(从2008年到2017年)的工业增加值(万亿元),如下表:
年份 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年份序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
工业增加值 | 13.2 | 13.8 | 16.5 | 19.5 | 20.9 | 22.2 | 23.4 | 23.7 | 24.8 | 28 |
依据表格数据,得到下面的散点图及一些统计量的值.
5.5 | 20.6 | 82.5 | 211.52 | 129.6 |
(1)根据散点图和表中数据,此研究机构对工业增加值(万亿元)与年份序号的回归方程类型进行了拟合实验,研究人员甲采用函数,其拟合指数;研究人员乙采用函数,其拟合指数;研究人员丙采用线性函数,请计算其拟合指数,并用数据说明哪位研究人员的函数类型拟合效果最好.(注:相关系数与拟合指数满足关系).
(2)根据(1)的判断结果及统计值,建立关于的回归方程(系数精确到0.01);
(3)预测到哪一年的工业增加值能突破30万亿元大关.
附:样本 的相关系数,
,,.
【题目】为积极响应国家“阳光体育运动”的号召,某学校在了解到学生的实际运动情况后,发起以“走出教室,走到操场,走到阳光”为口号的课外活动倡议。为调查该校学生每周平均体育运动时间的情况,从高一高二基础年级与高三三个年级学生中按照4:3:3的比例分层抽样,收集300位学生每周平均体育运动时间的样本数据(单位:小时),得到如图所示的频率分布直方图。
(1)据图估计该校学生每周平均体育运动时间.并估计高一年级每周平均体育运动时间不足4小时的人数;
(2)规定每周平均体育运动时间不少于6小时记为“优秀”,否则为“非优秀”,在样本数据中,有30位高三学生的每周平均体育运动时间不少于6小时,请完成下列列联表,并判断是否有99%的把握认为“该校学生的每周平均体育运动时间是否“优秀”与年级有关”.
基础年级 | 高三 | 合计 | |
优秀 | |||
非优秀 | |||
合计 | 300 |
P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
附:K2,n=a+b+c+d.