题目内容
【题目】在△ABC中,角A,B,C的对边分别为a,b,c, 且, 若.
(1)求角B的大小;
(2)若, 且△ABC的面积为, 求sinA的值.
【答案】(1);(2).
【解析】
(1)由正弦定理,同角三角函数基本关系式化简已知,结合sinA≠0,sinB≠0,可求cosB,结合范围0<B<π,可得B的值;
(2)由已知利用三角形的面积公式可求ac的值,由余弦定理得a+c=4,联立解得a,c的值,由正弦定理即可解得sinA的值.
(1)在ABC中,sin(B+C) = sinA , 由正弦定理和已知条件得:
sinAtanB = 2sinBsinA , 由于sinA 0 , sinB 0, 则有:cosB =, 又0<B< ,
所以B =
(2)由题可知:SABC = acsinB = acsin=, ac=3 ,
在ABC中由余弦定理得:b2=a2+c2-2accos, 即有:7= a2+c2- ac , 整理得:
(a+c)2 - 3ac = 7 , 代入得:(a+c)2 =16 , a + c = 4 ,
解方程组, 又a>c,得:a=3,c=1 , 由正弦定理得:,
sinA = .
【题目】即将于年夏季毕业的某大学生准备到贵州非私营单位求职,为了了解工资待遇情况,他在贵州省统计局的官网上,查询到年到年非私营单位在岗职工的年平均工资近似值(单位:万元),如下表:
年份 | ||||||||||
序号 | ||||||||||
年平均工资 |
(1)请根据上表的数据,利用线性回归模型拟合思想,求关于的线性回归方程(,的计算结果根据四舍五入精确到小数点后第二位);
(2)如果毕业生对年平均工资的期望值为8.5万元,请利用(1)的结论,预测年的非私营单位在岗职工的年平均工资(单位:万元。计算结果根据四舍五入精确到小数点后第二位),并判断年平均工资能否达到他的期望.
参考数据:,,
附:对于一组具有线性相关的数据:,,,,
其回归直线的斜率和截距的最小二乘法估计分别为
,