ÌâÄ¿ÄÚÈÝ
ÒÑÖªF1£¬F2ΪÍÖÔ²C£º
+
=1£¬£¨a£¾b£¾0£©µÄ×óÓÒ½¹µã£¬OÊÇ×ø±êԵ㣬¹ýF2×÷´¹Ö±ÓÚxÖáµÄÖ±ÏßMF2½»ÍÖÔ²ÓÚM£¬Éè|MF2|=d£®
£¨1£©Ö¤Ã÷£ºd£¬b£¬a³ÉµÈ±ÈÊýÁУ»
£¨2£©ÈôMµÄ×ø±êΪ(
£¬1)£¬ÇóÍÖÔ²CµÄ·½³Ì£»
[ÎÄ¿Æ]ÔÚ£¨2£©µÄÍÖÔ²ÖУ¬¹ýF1µÄÖ±ÏßlÓëÍÖÔ²C½»ÓÚA¡¢BÁ½µã£¬Èô
•
=0£¬ÇóÖ±ÏßlµÄ·½³Ì£®
[Àí¿Æ]ÔÚ£¨2£©µÄÍÖÔ²ÖУ¬¹ýF1µÄÖ±ÏßlÓëÍÖÔ²C½»ÓÚA¡¢BÁ½µã£¬ÈôÍÖÔ²CÉÏ´æÔÚµãP£¬Ê¹µÃ
=
+
£¬ÇóÖ±ÏßlµÄ·½³Ì£®
x2 |
a2 |
y2 |
b2 |
£¨1£©Ö¤Ã÷£ºd£¬b£¬a³ÉµÈ±ÈÊýÁУ»
£¨2£©ÈôMµÄ×ø±êΪ(
2 |
[ÎÄ¿Æ]ÔÚ£¨2£©µÄÍÖÔ²ÖУ¬¹ýF1µÄÖ±ÏßlÓëÍÖÔ²C½»ÓÚA¡¢BÁ½µã£¬Èô
OA |
OB |
[Àí¿Æ]ÔÚ£¨2£©µÄÍÖÔ²ÖУ¬¹ýF1µÄÖ±ÏßlÓëÍÖÔ²C½»ÓÚA¡¢BÁ½µã£¬ÈôÍÖÔ²CÉÏ´æÔÚµãP£¬Ê¹µÃ
OP |
OA |
OB |
·ÖÎö£º£¨1£©ÉèMµãµÄ×ø±êΪ£¨c£¬y0£©£¬Ôò|y0|=d£¬´úÈëÍÖÔ²·½³Ì£¬ÕûÀí¿ÉµÃ
=
£¬½ø¶ø¸ù¾ÝµÈ±ÈÊýÁеĶ¨ÒåµÃµ½½áÂÛ£»
£¨2£©MµÄ×ø±êΪ(
£¬1)£¬Ôòc=
£¬d=1£¬½ø¶øÇó³öa£¬bµÄÖµ£¬¿ÉµÃÍÖÔ²CµÄ·½³Ì£»
[ÎÄ¿Æ]ÉèµãA£¨x1£¬y1£©¡¢B£¨x2£¬y2£©£¬ÓÉ
•
=0£¬ÁªÁ¢·½³Ì£¬ÓÉΤ´ï¶¨ÀíºÍÏòÁ¿´¹Ö±µÄ³äÒªÌõ¼þ¹¹Ôì¹ØÓÚÖ±ÏßбÂʵķ½³Ì£¬½â·½³ÌÇó³öÖ±ÏßбÂÊ£¬¿ÉµÃÖ±ÏßlµÄ·½³Ì£®
[Àí¿Æ]ÉèµãP£¨x£¬y£©£¬A£¨x1£¬y1£©¡¢B£¨x2£¬y2£©£¬½ø¶ø¸ù¾Ý
=
+
£¬ÓÉΤ´ï¶¨ÀíºÍÏòÁ¿¼Ó·¨×ø±êÔËË㹫ʽ£¬¹¹Ôì¹ØÓÚÖ±ÏßбÂʵķ½³Ì£¬½â·½³ÌÇó³öÖ±ÏßбÂÊ£¬¿ÉµÃÖ±ÏßlµÄ·½³Ì£®
d |
b |
b |
a |
£¨2£©MµÄ×ø±êΪ(
2 |
2 |
[ÎÄ¿Æ]ÉèµãA£¨x1£¬y1£©¡¢B£¨x2£¬y2£©£¬ÓÉ
OA |
OB |
[Àí¿Æ]ÉèµãP£¨x£¬y£©£¬A£¨x1£¬y1£©¡¢B£¨x2£¬y2£©£¬½ø¶ø¸ù¾Ý
OP |
OA |
OB |
½â´ð£ºÖ¤Ã÷£º£¨1£©ÓÉÌõ¼þÖªMµãµÄ×ø±êΪ£¨c£¬y0£©£¬ÆäÖÐ|y0|=d£¬
¡à
+
=1£¬d=b?
=
£¬£¨3·Ö£©
¡à
=
£¬
¼´d£¬b£¬a³ÉµÈ±ÈÊýÁУ®£¨4·Ö£©
½â£º£¨2£©ÓÉÌõ¼þÖªc=
£¬d=1£¬
¡à
(6·Ö)
¡à½âµÃa=2£¬b=
£®£¬
¡àÍÖÔ²·½³ÌΪ
+
=1£¨8·Ö£©
[ÎÄ¿Æ]ÉèµãA£¨x1£¬y1£©¡¢B£¨x2£¬y2£©£¬
µ±l¡ÍxÖáʱ£¬A£¨-
£¬-1£©¡¢B£¨-
£¬1£©£¬
ËùÒÔ
•
¡Ù0£®£¨9·Ö£©
ÉèÖ±ÏßlµÄ·½³ÌΪy=k£¨x+
£©£¬
´úÈëÍÖÔ²·½³ÌµÃ
+
=1£®£¨11·Ö£©
¼´£¨1+2k2£©x2-4
k2x+4k2-4=0
ËùÒÔx1+x2=
£¬x1?x2=
£®£¨13·Ö£©
ÓÉ
•
=0µÃx1?x2+y1?y2=0
x1?x2+k2(x1+
)(x2+
)=(1+k2)x1?x2+
k2(x1+x2)+2k2=0
´úÈëµÃ
-
+2k2=0£¬½âµÃk=¡À
£®
ËùÒÔÖ±ÏßlµÄ·½³ÌΪy=¡À
(x+
)£®£¨16·Ö£©
[Àí¿Æ]ÉèµãP£¨x£¬y£©£¬A£¨x1£¬y1£©¡¢B£¨x2£¬y2£©£¬
ÓÉ
=
+
£¬µÃ
µ±l¡ÍxÖáʱ£¬A£¨-
£¬-1£©¡¢B£¨-
£¬1£©£¬
´ËʱP£¨-2
£¬0£©²»ÔÚÍÖÔ²ÉÏ£®£¨9·Ö£©
ÉèÖ±ÏßlµÄ·½³ÌΪy=k£¨x+
£©£¬
´úÈëÍÖÔ²·½³ÌµÃ£¨1+2k2£©x2-4
k2x+4k2-4=0£®£¨11·Ö£©
ËùÒÔx1+x2=
£¬x1?x2=
£®£¨13·Ö£©
°ÑµãP£¨x£¬y£©´úÈëÍÖÔ²·½³ÌµÃ
+
=1£¬½âµÃk2=
£¬
ËùÒÔÖ±ÏßlµÄ·½³ÌΪy=¡À
(x+
)£®£¨16·Ö£©
¡à
c2 |
a2 |
d2 |
b2 |
1-
|
b2 |
a |
¡à
d |
b |
b |
a |
¼´d£¬b£¬a³ÉµÈ±ÈÊýÁУ®£¨4·Ö£©
½â£º£¨2£©ÓÉÌõ¼þÖªc=
2 |
¡à
|
¡à½âµÃa=2£¬b=
2 |
¡àÍÖÔ²·½³ÌΪ
x2 |
4 |
y2 |
2 |
[ÎÄ¿Æ]ÉèµãA£¨x1£¬y1£©¡¢B£¨x2£¬y2£©£¬
µ±l¡ÍxÖáʱ£¬A£¨-
2 |
2 |
ËùÒÔ
OA |
OB |
ÉèÖ±ÏßlµÄ·½³ÌΪy=k£¨x+
2 |
´úÈëÍÖÔ²·½³ÌµÃ
x2 |
4 |
k2(x+
| ||
2 |
¼´£¨1+2k2£©x2-4
2 |
ËùÒÔx1+x2=
4
| ||
1+2k2 |
4k2-4 |
1+2k2 |
ÓÉ
OA |
OB |
x1?x2+k2(x1+
2 |
2 |
2 |
´úÈëµÃ
(1+k2)(4k2-4) |
1+2k2 |
4
| ||||
1+2k2 |
2 |
ËùÒÔÖ±ÏßlµÄ·½³ÌΪy=¡À
2 |
2 |
[Àí¿Æ]ÉèµãP£¨x£¬y£©£¬A£¨x1£¬y1£©¡¢B£¨x2£¬y2£©£¬
ÓÉ
OP |
OA |
OB |
|
µ±l¡ÍxÖáʱ£¬A£¨-
2 |
2 |
´ËʱP£¨-2
2 |
ÉèÖ±ÏßlµÄ·½³ÌΪy=k£¨x+
2 |
´úÈëÍÖÔ²·½³ÌµÃ£¨1+2k2£©x2-4
2 |
ËùÒÔx1+x2=
4
| ||
1+2k2 |
4k2-4 |
1+2k2 |
°ÑµãP£¨x£¬y£©´úÈëÍÖÔ²·½³ÌµÃ
32k4 |
4(1+2k2)2 |
8k2 |
2(1+2k2)2 |
1 |
2 |
ËùÒÔÖ±ÏßlµÄ·½³ÌΪy=¡À
| ||
2 |
2 |
µãÆÀ£º±¾Ì⿼²éµÄ֪ʶµãÊÇÖ±ÏßÓëԲ׶ÇúÏßµÄ×ÛºÏÎÊÌ⣬ÍÖÔ²µÄ¼òµ¥ÐÔÖÊ£¬ÊǸ߿¼µÄѹÖáÌâÐÍ£¬×ÛºÏÄÜÁ¦Ç¿£¬ÔËËãÁ¿´ó£¬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÒÑÖªF1£¬F2ΪÍÖÔ²
+
=1£¨a£¾b£¾0£©µÄÁ½¸ö½¹µã£¬¹ýF2×÷ÍÖÔ²µÄÏÒAB£¬Èô¡÷AF1BµÄÖܳ¤Îª16£¬ÍÖÔ²µÄÀëÐÄÂÊe=
£¬ÔòÍÖÔ²µÄ·½³ÌΪ£¨¡¡¡¡£©
x2 |
a2 |
y2 |
b2 |
| ||
2 |
A¡¢
| ||||
B¡¢
| ||||
C¡¢
| ||||
D¡¢
|