ÌâÄ¿ÄÚÈÝ
Èçͼ£¬ÒÑÖªµãA£¨0£¬-3£©£¬¶¯µãPÂú×ã|PA|=2|PO|£¬ÆäÖÐOΪ×ø±êԵ㣮£¨¢ñ£©Ç󶯵ãPµÄ¹ì¼£·½³Ì£®
£¨¢ò£©¼Ç£¨¢ñ£©ÖÐËùµÃµÄÇúÏßΪC£®¹ýÔµãO×÷Á½ÌõÖ±Ïßl1£ºy=k1x£¬l2£ºy=k2x·Ö±ð½»ÇúÏßCÓÚµãE£¨x1£¬y1£©¡¢F£¨x2£¬y2£©¡¢G£¨x3£¬y3£©¡¢H£¨x4£¬y4£©£¨ÆäÖÐy2£¾0£¬y4£¾0£©£®ÇóÖ¤£º
k1x1x2 |
x1+x2 |
k2x3x4 |
x3+x4 |
£¨III£©¶ÔÓÚ£¨¢ò£©ÖеÄE¡¢F¡¢G¡¢H£¬ÉèEH½»xÖáÓÚµãQ£¬GF½»xÖáÓÚµãR£®ÇóÖ¤£º|OQ|=|OR|£®£¨Ö¤Ã÷¹ý³Ì²»¿¼ÂÇEH»òGF´¹Ö±ÓÚxÖáµÄÇéÐΣ©
·ÖÎö£º£¨1£©ÉèµãPµÄ×ø±êΪ£¨x£¬y£©£¬½ø¶ø±íʾ³ö|PA|ºÍ|PO|£¬¸ù¾Ý|PA|=2|PO|£¬ÇóµÄµãPµÄ¹ì¼£·½³Ì£®
£¨2£©½«Ö±ÏßEFºÍGHµÄ·½³Ì·Ö±ð´úÈëÔ²C·½³Ì£¬ÀûÓÃΤ´ï¶¨Àí·Ö±ðÇóµÃ½»µãºá×ø±êÖ®ºÍÓëÖ®»ý£¬½ø¶ø´úÈë
ºÍ
£¬Ö¤Ã÷Ôʽ£®
£¨3£©ÉèµãQ£¨q£¬0£©£¬µãQ£¨r£¬0£©£¬ÓÉE¡¢Q¡¢HÈýµã¹²ÏßÇóµÃqµÄ±í´ïʽ£¬¸ù¾ÝF¡¢R¡¢GÈýµã¹²ÏßÇóµÃrµÄ±í´ïʽ£¬½ø¶ø¸ù¾Ý£¨2£©ÖеÄ
=
ÕûÀíµÃ
+
=0£¬½ø¶ø¿ÉÖªq+r=0£¬ËùÒÔ|q|=|r|£¬¼´|OQ|=|OR|£®
£¨2£©½«Ö±ÏßEFºÍGHµÄ·½³Ì·Ö±ð´úÈëÔ²C·½³Ì£¬ÀûÓÃΤ´ï¶¨Àí·Ö±ðÇóµÃ½»µãºá×ø±êÖ®ºÍÓëÖ®»ý£¬½ø¶ø´úÈë
k1x1x2 |
x1+x2 |
k2x3x4 |
x3+x4 |
£¨3£©ÉèµãQ£¨q£¬0£©£¬µãQ£¨r£¬0£©£¬ÓÉE¡¢Q¡¢HÈýµã¹²ÏßÇóµÃqµÄ±í´ïʽ£¬¸ù¾ÝF¡¢R¡¢GÈýµã¹²ÏßÇóµÃrµÄ±í´ïʽ£¬½ø¶ø¸ù¾Ý£¨2£©ÖеÄ
k1x1x2 |
x1+x2 |
k2x3x4 |
x3+x4 |
(k1-k2)x2x3 |
k1x2-k2x3 |
(k1-k2)x1x4 |
k1x1-k2x4 |
½â´ð£º½â£º£¨¢ñ£©ÉèµãP£¨x£¬y£©£¬ÒÀÌâÒâ¿ÉµÃ
=2
ÕûÀíµÃx2+y2-2y-3=0
¹Ê¶¯µãPµÄ¹ì¼£·½³ÌΪx2+y2-2y-3=0£®
£¨¢ò£©½«Ö±ÏßEFµÄ·½³Ìy=k1x´úÈëÔ²C·½³Ì
ÕûÀíµÃ£¨k12+1£©x2-2k1x-3=0
¸ù¾Ý¸ùÓëϵÊýµÄ¹ØϵµÃx1+x2=
£¬x1x2=-
¢Ù
½«Ö±ÏßGHµÄ·½³Ìy=k2x´úÈëÔ²C·½³Ì£¬
ͬÀí¿ÉµÃx3+x4=
£¬x3x4=-
¢Ú
ÓÉ¢Ù¡¢¢Ú¿ÉµÃ
=-
=
£¬ËùÒÔ½áÂÛ³ÉÁ¢£®
£¨¢ó£©ÉèµãQ£¨q£¬0£©£¬µãQ£¨r£¬0£©£¬ÓÉE¡¢Q¡¢HÈýµã¹²Ïß
µÃ
=
£¬½âµÃq=
ÓÉF¡¢R¡¢GÈýµã¹²Ïß
ͬÀí¿ÉµÃr=
ÓÉ
=
±äÐεÃ
=
¼´
+
=0£¬
´Ó¶øq+r=0£¬ËùÒÔ|q|=|r|£¬¼´|OQ|=|OR|£®
x2+(y+3)2 |
x2+y2 |
ÕûÀíµÃx2+y2-2y-3=0
¹Ê¶¯µãPµÄ¹ì¼£·½³ÌΪx2+y2-2y-3=0£®
£¨¢ò£©½«Ö±ÏßEFµÄ·½³Ìy=k1x´úÈëÔ²C·½³Ì
ÕûÀíµÃ£¨k12+1£©x2-2k1x-3=0
¸ù¾Ý¸ùÓëϵÊýµÄ¹ØϵµÃx1+x2=
2k1 |
k12+1 |
3 |
k12+1 |
½«Ö±ÏßGHµÄ·½³Ìy=k2x´úÈëÔ²C·½³Ì£¬
ͬÀí¿ÉµÃx3+x4=
2k2 |
k22+1 |
3 |
k22+1 |
ÓÉ¢Ù¡¢¢Ú¿ÉµÃ
k1x1x2 |
x1+x2 |
3 |
2 |
k2x3x4 |
x3+x4 |
£¨¢ó£©ÉèµãQ£¨q£¬0£©£¬µãQ£¨r£¬0£©£¬ÓÉE¡¢Q¡¢HÈýµã¹²Ïß
µÃ
x1-q |
k1x1 |
x4-q |
k2x4 |
(k1-k2)x1x4 |
k1x1-k2x4 |
ÓÉF¡¢R¡¢GÈýµã¹²Ïß
ͬÀí¿ÉµÃr=
(k1-k2)x2x3 |
k1x2-k2x3 |
ÓÉ
k1x1x2 |
x1+x2 |
k2x3x4 |
x3+x4 |
x2x3 |
k1x2-k2x3 |
-x1x4 |
k1x1-k2x4 |
¼´
(k1-k2)x2x3 |
k1x2-k2x3 |
(k1-k2)x1x4 |
k1x1-k2x4 |
´Ó¶øq+r=0£¬ËùÒÔ|q|=|r|£¬¼´|OQ|=|OR|£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁËÔ²·½³ÌµÃ×ÛºÏÓ¦Óã®Éæ¼°Ö±ÏßÓëÔ²µÄ¹Øϵ³£ÐèÒª°ÑÖ±Ïß·½³ÌÓëÔ²·½³ÌÁªÁ¢£¬ÀûÓÃΤ´ï¶¨ÀíÀ´½â¾öÎÊÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿