题目内容

(本小题满分12分)设函数的定义域为R,当时,,且对任意,都有,且
(1)求的值;
(2)证明:在R上为单调递增函数;
(3)若有不等式成立,求的取值范围。
(1);(2)的取值范围是
本题主要考查了抽象函数表达式反映函数性质及抽象函数表达式的应用,函数单调性的定义及其证明,利用函数性质和函数的单调性解不等式的方法,转化化归的思想方法。
(1)利用赋值法,令x=2,y=0即可求得f(0)的值,令x=y=1,即可求得f(1)的值;
(2)先证明0<f(x)<1,再利用函数单调性的定义,设任意的x1,x2∈R,且x1<x2,利用抽象表达式和已知函数性质证明f(x1)<f(x2),即可得证;
(3)利用抽象表达式,先将不等式化为f(x+1+ )<f(1),再利用函数的单调性将不等式转化为分式不等式即可得解集。
解(1)因为,所以,所以,又因为,且当时,,所以
(2)当时,,所以,而,所以,所以,对任意的,当时,有
,因为,所以,所以,即,所以,即,所以在R上是单调递增函数(3)因为,所以,而在R上是单调递增函数,所以,即:,所以,所以,所以的取值范围是
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网