题目内容
(理)已知F1(-2,0),F2(2,0),点P满足|PF1|-|PF2|=2,记点P的轨迹为E.(1)求轨迹E的方程;
(2)若直线l过点F2且与轨迹E交于P、Q两点.
①无论直线l绕点F2怎样转动,在x轴上总存在定点M(m,0),使MP⊥MQ恒成立,求实数m的值.
②过P、Q作直线x=的垂线PA、QB,垂足分别为A、B,记λ=,求λ的取值范围.
(文)已知等差数列{an}中,a1=-2,a2=1.
(1)求{an}的通项公式;
(2)调整数列{an}的前三项a1、a2、a3的顺序,使它成为等比数列{bn}的前三项,求{bn}的前n项和.
答案:(理)解:(1)由|PF1|-|PF2|=2<|F1F2|,知点P的轨迹E是以F1、F2为焦点的双曲线右支,由c=2,2a=2,∴b2=3.故轨迹E的方程为x2=1(x≥1).
(2)当直线l的斜率存在时,设直线方程为y=k(x-2),P(x1,y1),Q(x2,y2),与双曲线方程联立消去y,得(k2-3)x2-4k2x+4k2+3=0.
∴
①∵=(x1-m)(x2-m)+y1y2=(x1-m)(x2-m)+k2(x1-2)(x2-2)
=(k2+1)x1x2-(2k2+m)(x1+x2)+m2+4k2
==+m2.
∵MP⊥MQ,∴=0.故得3(1-m2)+k2(m2-4m-5)=0对任意的k2>3恒成立,
∴解得m=-1.∴当m=-1时,MP⊥MQ.
当直线l的斜率不存在时,由P(2,3),Q(2,-3)及M(-1,0),知结论也成立,综上,当m=-1时,MP⊥MQ.
②∵a=1,c=2,
∴直线x=是双曲线的右准线.由双曲线定义,得|PA|=|PF2|=|PF2|,|QB|=|QF2|.
∴λ==.
∵k2>3,∴0<<,故<λ<.
注意到直线的斜率不存在时,|PQ|=|AB|,此时λ=.综上,λ=[,).
(文)解:(1)由已知,得a2-a1=1-(-2)=3,∴{an}的公差d=3.∴an=a1+(n-1)d=-2+3(n-1)=3n-5.
(2)由(1)得a3=a2+d=1+3=4,∴a1=-2,a2=1,a3=4.依题意,可得数列{bn}的前三项为b1=1,b2=-2,b3=4或b1=4,b2=-2,b3=1.
①当数列{bn}的前三项为b1=1,b2=-2,b3=4时,则q=-2,
∴Sn==[1-(-2)n].
②当数列{bn}的前三项为b1=4,b2=-2,b3=1时,则q=-.
∴Sn==[1-(-)n].