题目内容
设a为实数,记函数![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173714035374887/SYS201311031737140353748021_ST/0.png)
(1)设t=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173714035374887/SYS201311031737140353748021_ST/1.png)
(2)求g(a).
【答案】分析:(1)令
,由1+x≥0且1-x≥0,得-1≤x≤1,再由
,且t≥0…①,可得t的取值范围是
,进而得m(t)的解析式.
(2)由题意知g(a)即为函数m(t)=
,
的最大值,直线
是抛物线m(t)=
的对称轴,分a>0、a=0、a<0三种情况利用函数的单调性求出函数f(x)的最大值为g(a).
解答:解:(1)∵
,∴要使t有意义,必须1+x≥0且1-x≥0,即-1≤x≤1.
∵
,且t≥0…①,∴t的取值范围是
.
由①得:
,∴
=
,
.
(2)由题意知g(a)即为函数m(t)=
,
的最大值,
∵直线
是抛物线m(t)=
的对称轴,∴可分以下几种情况进行讨论:
1)当a>0时,函数y=m(t),
的图象是开口向上的抛物线的一段,
由
知m(t)在
上单调递增,故g(a)=m(2)=a+2;
2)当a=0时,m(t)=t,在
上单调递增,有g(a)=2;
3)当a<0时,,函数y=m(t),
的图象是开口向下的抛物线的一段,
若![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173714035374887/SYS201311031737140353748021_DA/23.png)
即
时,g(a)=
,
若![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173714035374887/SYS201311031737140353748021_DA/27.png)
即
时,g(a)=
,
若
∈(2,+∞)即
时,g(a)=m(2)=a+2.
综上所述,有g(a)=
.
点评:本题主要考查二次函数在闭区间上的最值的求法,函数解析式求解的方法,体现了分类讨论的数学思想.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173714035374887/SYS201311031737140353748021_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173714035374887/SYS201311031737140353748021_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173714035374887/SYS201311031737140353748021_DA/2.png)
(2)由题意知g(a)即为函数m(t)=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173714035374887/SYS201311031737140353748021_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173714035374887/SYS201311031737140353748021_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173714035374887/SYS201311031737140353748021_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173714035374887/SYS201311031737140353748021_DA/6.png)
解答:解:(1)∵
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173714035374887/SYS201311031737140353748021_DA/7.png)
∵
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173714035374887/SYS201311031737140353748021_DA/8.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173714035374887/SYS201311031737140353748021_DA/9.png)
由①得:
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173714035374887/SYS201311031737140353748021_DA/10.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173714035374887/SYS201311031737140353748021_DA/11.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173714035374887/SYS201311031737140353748021_DA/12.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173714035374887/SYS201311031737140353748021_DA/13.png)
(2)由题意知g(a)即为函数m(t)=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173714035374887/SYS201311031737140353748021_DA/14.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173714035374887/SYS201311031737140353748021_DA/15.png)
∵直线
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173714035374887/SYS201311031737140353748021_DA/16.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173714035374887/SYS201311031737140353748021_DA/17.png)
1)当a>0时,函数y=m(t),
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173714035374887/SYS201311031737140353748021_DA/18.png)
由
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173714035374887/SYS201311031737140353748021_DA/19.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173714035374887/SYS201311031737140353748021_DA/20.png)
2)当a=0时,m(t)=t,在
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173714035374887/SYS201311031737140353748021_DA/21.png)
3)当a<0时,,函数y=m(t),
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173714035374887/SYS201311031737140353748021_DA/22.png)
若
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173714035374887/SYS201311031737140353748021_DA/23.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173714035374887/SYS201311031737140353748021_DA/24.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173714035374887/SYS201311031737140353748021_DA/25.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173714035374887/SYS201311031737140353748021_DA/26.png)
若
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173714035374887/SYS201311031737140353748021_DA/27.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173714035374887/SYS201311031737140353748021_DA/28.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173714035374887/SYS201311031737140353748021_DA/29.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173714035374887/SYS201311031737140353748021_DA/30.png)
若
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173714035374887/SYS201311031737140353748021_DA/31.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173714035374887/SYS201311031737140353748021_DA/32.png)
综上所述,有g(a)=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173714035374887/SYS201311031737140353748021_DA/33.png)
点评:本题主要考查二次函数在闭区间上的最值的求法,函数解析式求解的方法,体现了分类讨论的数学思想.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目