题目内容

已知向量
a
=(sinx,
3
4
),
b
=(cosx,-1)

(1)当
a
b
时,求cos2x-sin2x的值;
(2)设函数f(x)=2(
a
+
b
)•
b
,已知在△ABC中,内角A,B,C的对边分别为a,b,c,若a=
3
,b=2,sinB=
6
3
,求f(x)+4cos(2A+
π
6
)(x∈[0,
π
4
])
的取值范围.
分析:(1)由两向量的坐标,以及两向量平行列出关系式,整理求出tanx的值,所求式子变形后利用同角三角函数间的基本关系变形,将tanx的值代入计算即可求出值;
(2)利用平面向量的数量积运算法则确定出f(x),由a,b及sinB的值,利用正弦定理求出sinA的值,确定出A的度数,代入所求式子,根据x的范围求出这个角的范围,进而求出正弦函数的值域,即可确定出所求式子的范围.
解答:解:(1)∵
a
=(sinx,
3
4
),
b
=(cosx,-1),
a
b

∴-sinx=
3
4
cosx,即tanx=-
3
4

则cos2x-sin2x=cos2x-2sinxcosx=
cos2x-2sinxcosx
cos2x+sin2x
=
1-2tanx
1+tan2x
=
1+2×
3
4
1+
9
16
=
8
5

(2)f(x)=2(
a
+
b
)•
b
=2(sinxcosx+cos2x+
1
4
)=sin2x+cos2x+
3
2
=
2
sin(2x+
π
4
)+
3
2

∵a=
3
,b=2,sinB=
6
3

∴由正弦定理
a
sinA
=
b
sinB
得:sinA=
asinB
b
=
3
×
6
3
2
=
2
2

∵a<b,∴A<B,
∴A=
π
4

∴原式=
2
sin(2x+
π
4
)-
1
2

∵x∈[0,
π
4
],∴2x+
π
4
∈[
π
4
4
],
∴1≤
2
sin(2x+
π
4
)≤
2

1
2
2
sin(2x+
π
4
)-
1
2
2
-
1
2
.即所求式子的范围为[
1
2
2
-
1
2
].
点评:此题考查了余弦定理,数量积的坐标表达式,正弦函数的定义域与值域,以及三角函数的恒等变换,熟练掌握余弦定理是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网