题目内容
已知总体的各个体的值由小到大依次为2,3,3,7,a,b,12,14,18,20,且总体的中位数为10.5(将一组数据按大小依次排列,把处在最中间位置的一个数据或最中间两个数据的平均数叫做这组数据的中位数).
(1)求该总体的平均数;
(2)求a的值,使该总体的方差最小.
(1)求该总体的平均数;
(2)求a的值,使该总体的方差最小.
分析:(1)由中位数和平均数的定义可解决
(2)由a、b的关系,把问题转化成二次函数求最值问题,即可求解
(2)由a、b的关系,把问题转化成二次函数求最值问题,即可求解
解答:解:(1)由题意得
=10.5,即a+b=21.-----------------------(2分)
于是2+3+3+7+a+b+12+14+18+20=100,----------------------(4分)
所以2,3,3,7,a,b,12,14,18,20的平均数为
=10.----------------------(6分)
(2)设2,3,3,7,a,b,12,14,18,20的方差为s2,则
s2=
[(2-10)2+(3-10)2+…+(a-10)2+(b-10)2+…+(20-10)2]
=
[355+(a-10)2+(b-10)2]=
[355+(a-10)2+(11-a)2]
=
(a2-21a+288).----------------------(11分)
故当a=
=10.5时,总体的方差s2取得最小值.---------------------(14分)
a+b |
2 |
于是2+3+3+7+a+b+12+14+18+20=100,----------------------(4分)
所以2,3,3,7,a,b,12,14,18,20的平均数为
100 |
10 |
(2)设2,3,3,7,a,b,12,14,18,20的方差为s2,则
s2=
1 |
10 |
=
1 |
10 |
1 |
10 |
=
1 |
5 |
故当a=
21 |
2 |
点评:本题考查数据的平均数、中数、方差,其次要掌握平均数、中数、方差的计算公式,还考查二次函数求最值问题
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目