题目内容
(本小题满分12分)
已知向量 a = (cos x,sin x),b = (-cos x,cos x),c = (-1,0)
(I) 若 x = ,求向量 a、c 的夹角;
(II) 当 x∈[,] 时,求函数 f (x) = 2a·b + 1 的最大值。
(本小题满分12分)
解:(I) 当 x = 时,cos <a,c> = ………… 1分
= ………… 2分
= -cos x = -cos = cos ………… 3分
∵ 0≤<a,c>≤p, ………… 4分
∴ <a,c> = ………… 5分
(II) f (x) = 2a·b + 1 = 2 (-cos 2 x + sin x cos x) + 1 ………… 6分
= 2 sin x cos x-(2cos 2 x-1) ………… 7分
= sin 2x-cos 2x ………… 8分
= sin (2x-) ………… 9分
∵ x∈[,],∴ 2x-∈[,2p], ………… 10分
故 sin (2x-)∈[-1,] ………… 11分
∴ 当 2x-= ,即 x = 时,f (x)max = 1 ………… 12分
练习册系列答案
相关题目