题目内容
【题目】在平面直角坐标系中,已知圆过坐标原点且圆心在曲线上.
(1)若圆分别与轴、轴交于点、(不同于原点),求证:的面积为定值;
(2)设直线与圆交于不同的两点,且,求圆的方程;
(3)设直线与(2)中所求圆交于点、, 为直线上的动点,直线,与圆的另一个交点分别为,,且,在直线异侧,求证:直线过定点,并求出定点坐标.
【答案】(1)证明过程见解析;(2) ;(3)直线过定点.
【解析】(1)由题意可设圆M的方程为,
即.令,得;令,得.
(定值).
(2)由,知.所以,解得.
当时,圆心M到直线的距离小于半径,符合题意;
当时,圆心M到直线的距离大于半径,不符合题意.
所以,所求圆M的方程为.
(3)设,,,又知,,
所以,.
显然,设,则.
从而直线PE方程为:,与圆M的方程联立,消去y,可得:,所以,,即;
同理直线PF方程为:,与圆M的方程联立,消去y,可得:,所以,,即.
所以 ;
.
消去参数m整理得. ①
设直线的方程为,代入,
整理得.
所以,.
代入①式,并整理得,
即,解得或.
当时,直线的方程为,过定点;
当时,直线的方程为,过定点
第二种情况不合题意(因为在直径的异侧),舍去.
所以,直线过定点.
【题目】 “中国式过马路”是网友对部分中国人集体闯红灯现象的一种调侃,即“凑够一撮人就可以走了,和红绿灯无关.”出现这种现象是大家受法不责众的“从众”心理影响,从而不顾及交通安全.某校对全校学生过马路方式进行调查,在所有参与调查的人中,“跟从别人闯红灯”“从不闯红灯”“带头闯红灯”人数如表所示:
跟从别人闯红灯 | 从不闯红灯 | 带头闯红灯 | |
男生 | 800 | 450 | 200 |
女生 | 100 | 150 | 300 |
(Ⅰ)在所有参与调查的人中,用分层抽样的方法抽取n人,已知“跟从别人闯红灯”的人抽取了45 人,求n的值;
(Ⅱ)在“带头闯红灯”的人中,将男生的200人编号为1,2,…,200;将女生的300人编号为201,202,…,500,用系统抽样的方法抽取4人参加“文明交通”宣传活动,若抽取的第一个人的编号为100,把抽取的4人看成一个总体,从这4人中任选取2人,求这两人均是女生的概率.