题目内容

函数f(x)=ax-1+3(a>0,且a≠1)的图象过一个定点P,且点P在直线mx+ny-1=0(m>0且n>0)上,则
1
m
+
4
n
的最小值是______.
当x=1时,f(1)=a0+3=4,函数f(x)恒过定点P(1,4).
∵点P在直线mx+ny-1=0(m>0且n>0)上,∴m+4n=1.
1
m
+
4
n
=(m+4n)(
1
m
+
4
n
)
=17+
4n
m
+
4m
n
≥17+2×4×
n
m
×
m
n
=25,当且仅当m=n=
1
5
时取等号.
1
m
+
4
n
的最小值是25.
故答案为25.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网