题目内容

函数f(x)=ax(a>0且a≠1)在[-1,1]上的最大值与最小值之和为
10
3
,则a的值为
3或
1
3
3或
1
3
分析:本题要分两种情况进行讨论:①0<a<1,函数y=ax在[-1,1]上为单调减函数,根据函数y=ax在[-1,1]上的最大值与最小值和为
10
3
,求出a②a>1,函数y=ax在[-1,1]上为单调增函数,根据函数y=ax在[-1,1]上的最大值与最小值和为
10
3
,求出a即可.
解答:解:①当0<a<1时
函数y=ax在[-1,1]上为单调减函数
∴函数y=ax在[-1,1]上的最大值与最小值分别为
1
a
,a
∵函数y=ax在[-1,1]上的最大值与最小值和为
10
3

1
a
+a=
10
3

∴a=
1
3

②当a>1时
函数y=ax在[-1,1]上为单调增函数
∴函数y=ax在[-1,1]上的最大值与最小值分别为a,
1
a

∵函数y=ax在[-1,1]上的最大值与最小值和为
10
3

1
a
+a=
10
3

∴a=3.
故答案为:3或
1
3
点评:本题考查了函数最值的应用,但解题的关键要注意对a进行讨论,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网