题目内容

(2006•广州一模)已知sin
α
2
-cos
α
2
=
5
5
α∈(
π
2
,π)
tanβ=
1
2

(Ⅰ)求sinα的值;
(Ⅱ)求tan(α-β)的值.
分析:(Ⅰ)把已知等式sin
α
2
-cos
α
2
=
5
5
左右两边平方,利用同角三角函数间的基本关系及二倍角的正弦函数公式化简,即可求出sinα的值;
(Ⅱ)由sinα及α的范围,利用同角三角函数间的基本关系求出cosα的值,再利用基本关系求出tanα的值,利用两角和与差的正切函数公式化简tan(α-β),将tanα及tanβ的值代入即可求出tan(α-β)的值.
解答:解:(Ⅰ)等式sin
α
2
-cos
α
2
=
5
5
左右两边平方得:
sin
α
2
-cos
α
2
2=sin2
α
2
+cos2
α
2
-2sin
α
2
cos
α
2
=1-sinα=(
5
5
)
2
=
1
5

∴sinα=
4
5

(Ⅱ)∵sinα=
4
5
,α∈(
π
2
,π),
∴cosα=-
1-sin2α
=-
3
5

∴tanα=
sinα
cosα
=-
4
3
,又tanβ=
1
2

tan(α-β)=
tanα-tanβ
1+tanαtanβ
=
-
4
3
-
1
2
1+(-
4
3
1
2
=-
11
2
点评:此题考查了两角和与差的正切函数公式,同角三角函数间的基本关系,以及二倍角的正弦函数公式,熟练掌握公式及基本关系是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网