题目内容
【题目】在四棱锥P﹣ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,过E点做EF⊥PB交PB于点F.求证:
(1)PA∥平面DEB;
(2)PB⊥平面DEF.
【答案】
(1)证明:连接AC,AC交BD于O.连接EO.
∵底面ABCD是正方形,
∴点O是AC的中点.
∴在△PAC中,EO是中位线,
∴PA∥EO,
∵EO平面EDB,且PA平面EDB,
∴PA∥平面EDB.
(2)解:∵PD⊥底面ABCD,且DC底面ABCD,
∴PD⊥BC.
∵底面ABCD是正方形,
∴DC⊥BC,可得:BC⊥平面PDC.
∵DE平面PDC,
∴BC⊥DE.
又∵PD=DC,E是PC的中点,∴DE⊥PC.∴DE⊥平面PBC.
∵PB平面PBC,∴DE⊥PB.
又∵EF⊥PB,且DE∩EF=E,
∴PB⊥平面EFD.
【解析】(1)由题意连接AC,AC交BD于O,连接EO,则EO是中位线,证出PA∥EO,由线面平行的判定定理知PA∥平面EDB;(2)由PD⊥底面ABCD得PD⊥DC,再由DC⊥BC证出BC⊥平面PDC,即得BC⊥DE,再由ABCD是正方形证出DE⊥平面PBC,则有DE⊥PB,再由条件证出PB⊥平面EFD.
【考点精析】根据题目的已知条件,利用直线与平面平行的判定和直线与平面垂直的判定的相关知识可以得到问题的答案,需要掌握平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行;一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想.
练习册系列答案
相关题目