题目内容

对?a,b∈R,定义:max{a,b}=
a,(a≥b)
b,(a<b)
,min{a,b}=
a,(a<b)
b,(a≥b)
.则下列各式:
(1)max{a,b}=
1
2
(a+b-|a-b|)
(2)max{a,b}=
1
2
(a+b+|a-b|)
(3)min{a,b}=
1
2
(a+b+|a-b|)
(4)min{a,b}=
1
2
(a+b-|a-b|)
其中恒成立的是(  )
分析:根据绝对值的代数意义,非负数的绝对值等于其本身,非正数的绝对值等于他的相反数,将绝对值符号去掉化为分段函数的形式,可得答案.
解答:解:∵
1
2
(a+b+|a-b|)=
1
2
(a+b+a-b),(a≥b)
1
2
(a+b-a+b),(a<b)
=
a,(a≥b)
b,(a<b)
=max{a,b};
1
2
(a+b-|a-b|)=
1
2
(a+b+a-b),(a<b)
1
2
(a+b-a+b),(a≥b)
=
a,(a<b)
b,(a≥b)
=min{a,b}
故选D
点评:本题考查的知识点是绝对值函数,根据绝对值的代数意义,将原式中绝对值符号去掉化为分段函数的形式,是解答的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网