题目内容

探究函数f(x)=x+
4
x
  x∈(0,+∞)的最小值,并确定相应的x的值,列表如下,请观察表中y值随x值变化的特点,完成下列问题:
x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
y 8.5 5 4.17 4.05 4.005 4 4.005 4.102 4.24 4.3 5 5.8 7.57
(1)若当x>0时,函数f(x)=x+
4
x
时,在区间(0,2)上递减,则在______上递增;
(2)当x=______时,f(x)=x+
4
x
,x>0的最小值为______;
(3)试用定义证明f(x)=x+
4
x
,x>0在区间上(0,2)递减;
(4)函数f(x)=x+
4
x
,x<0有最值吗?是最大值还是最小值?此时x为何值?
解题说明:(1)(2)两题的结果直接填写在答题卷中横线上;(4)题直接回答,不需证明.
(1)若函数f(x)=x+
4
x
  x∈(0,+∞)时,在区间(0,2)上递减,则在(2,+∞) 上递增;
(2)当x=2 时,f(x)=x+
4
x
  x∈(0,+∞)的最小值为4;---(4分)
(3)设任意的x1,x2∈(0,2),且x1<x2
f(x1)-f(x2)=x1+
4
x1
-(x2+
4
x2
)
=(x1-x2)(
x1x2-4
x1x2
)
-----(10分)
∵x1,x2∈(0,2),且x1<x2,∴0<x1x2<4,x1-x2<0,∴x1x2-4<0
∴f(x1)-f(x2)>0f(x1)>f(x2),即
∴f(x)=x+
4
x
  在区间(0,2)上单调递减---------------(12分)
(4)函数f(x)=x+
4
x
,x<0有最大值,当x=-2时,最大值是-4----(14分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网