题目内容
【题目】019年底,湖北省武汉市等多个地区陆续出现感染新型冠状病毒肺炎的患者,为及时有效地对疫情数据进行流行病学统计分析,某地研究机构针对该地实际情况,根据该地患者是否有武汉旅行史与是否有确诊病例接触史,将新冠肺炎患者分为四类:有武汉旅行史(无接触史),无武汉旅行史(无接触史),有武汉旅行史(有接触史)和无武汉旅行史(有接触史),统计得到以下相关数据:
(1)请将列联表填写完整,并判断能否在犯错误的概率不超过0.01的前提下,认为有武汉旅行史与有确诊病例接触史有关系?
有接触史 | 无接触史 | 总计 | |
有武汉旅行史 | 4 | ||
无武汉旅行史 | 10 | ||
总计 | 25 | 45 |
(2)已知在无武汉旅行史的10名患者中,有2名无症状感染者.现在从无武汉旅行史的10名患者中,选出2名进行病例研究,记选出无症状感染者的人数为,求的分布列以及数学期望.
下面的临界值表供参考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.076 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式:,其中.
【答案】(1)填表见解析;能在犯错误的概率不超过0.01的前提下,认为有武汉旅行史与有确诊病例接触史有关系(2)分布列见解析,期望为
【解析】
(1)根据表格中数据可得列联表,根据公式计算可得观测值,根据观测值,结合临界值表可得答案;
(2)根据题意,的值可能为0,1,2,根据古典概型的概率公式可得的各个取值的概率,从而可得分布列,根据数学期望的公式计算可得数学期望.
(1)列联表补充如下:
有接触史 | 无接触史 | 总计 | |
有武汉旅行史 | 15 | 4 | 19 |
无武汉旅行史 | 10 | 16 | 26 |
总计 | 25 | 20 | 45 |
随机变量的观测值为
所以能在犯错误的概率不超过0.01的前提下,认为有武汉旅行史与有确诊病例接触史有关系.
(2)根据题意,的值可能为0,1,2.
则,,,
故的分布列如下:
故的数学期望:.