题目内容

【题目】某篮球比赛采用7局4胜制,即若有一队先胜4局,则此队获胜,比赛就此结束.由于参加比赛的两队实力相当,每局比赛两队获胜的可能性均为.据以往资料统计,第一局比赛组织者可获得门票收入40万元,以后每局比赛门票收入比上一局增加10万元,则组织者在此次比赛中获得的门票收入不少于390万元的概率为________

【答案】

【解析】依题意,每局比赛获得的门票收入组成首项为40,公差为10的等差数列,设此数列为{an},则易知首项a1=40,公差d=10,故Sn=40n×10=5n2+35n.由Sn≥390,得n2+7n≥78,所以n≥6.所以要使获得的门票收入不少于390万元,则至少要比赛6局.①若比赛共进行6局,则;②若比赛共进行了7局,则P7.所以门票收入不少于390万元的概率.

故答案为:.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网