题目内容

【题目】已知f(x)是定义域为R的偶函数,当x≥0时,f(x)=x2﹣4x,那么,不等式f(x+2)<5的解集是

【答案】(﹣7,3)
【解析】解:因为f(x)为偶函数,所以f(|x+2|)=f(x+2),
则f(x+2)<5可化为f(|x+2|)<5,
即|x+2|2﹣4|x+2|<5,(|x+2|+1)(|x+2|﹣5)<0,
所以|x+2|<5,
解得﹣7<x<3,
所以不等式f(x+2)<5的解集是(﹣7,3).
故答案为:(﹣7,3).
由偶函数性质得:f(|x+2|)=f(x+2),则f(x+2)<5可变为f(|x+2|)<5,代入已知表达式可表示出不等式,先解出|x+2|的范围,再求x范围即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网