题目内容

下面是一道选择题的两种解法,两种解法看似都对,可结果并不一致,问题出在哪儿?
[题]在△ABC中,a=x,b=2,B=45°,若△ABC有两解,则x的取值范围是(  )
A.(2,+∞)B.(0,2)C.(2,  2
2
)
D.(
2
,  2)

[解法1]△ABC有两解,asinB<b<a,xsin45°<2<x,即2<x<2
2
,故选C.
[解法2]
a
sinA
=
b
sinB
sinA=
asinB
b
=
xsin45°
2
=
2
x
4

△ABC有两解,bsinA<a<b,
2
x
4
<x<2
,即0<x<2,故选B.
你认为______是正确的  (填“解法1”或“解法2”)
解法1正确
∵若a<b,则A<B,∵B=45°,∴△ABC只有一解,故解法2不正确
故答案为:解法1
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网