ÌâÄ¿ÄÚÈÝ
¼Ç¹«²îd¡Ù0µÄµÈ²îÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬ÒÑÖªa1=2+
£¬S3=12+3
£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽan¼°Ç°nÏîºÍSn£»
£¨2£©¼Çbn=an-
£¬Èô×ÔÈ»Êýn1£¬n2£¬¡£¬nk£¬¡Âú×ã1¡Ün1£¼n2£¼¡£¼nk£¼¡£¬²¢ÇÒb n1£¬b n2£¬¡£¬b nk£¬¡³ÉµÈ±ÈÊýÁУ¬ÆäÖÐn1=1£¬n2=3£¬Çónk£¨ÓÃk±íʾ£©£»
£¨3£©ÊÔÎÊ£ºÔÚÊýÁÐ{an}ÖÐÊÇ·ñ´æÔÚÈýÏîar£¬as£¬at£¨r£¼s£¼t£¬r£¬s£¬t¡ÊN*£©Ç¡ºÃ³ÉµÈ±ÈÊýÁУ¿Èô´æÔÚ£¬Çó³ö´ËÈýÏÈô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
2 |
2 |
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽan¼°Ç°nÏîºÍSn£»
£¨2£©¼Çbn=an-
2 |
£¨3£©ÊÔÎÊ£ºÔÚÊýÁÐ{an}ÖÐÊÇ·ñ´æÔÚÈýÏîar£¬as£¬at£¨r£¼s£¼t£¬r£¬s£¬t¡ÊN*£©Ç¡ºÃ³ÉµÈ±ÈÊýÁУ¿Èô´æÔÚ£¬Çó³ö´ËÈýÏÈô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨1£©ÒòΪa1=2+
£¬S3=3a1+3d=12+3
£¬ËùÒÔd=2£®
ËùÒÔan=a1+£¨n-1£©d=2n+
£¬Sn=
=
=n2+(
+1)n£»
£¨2£©ÒòΪbn=an-
=2n£¬ËùÒÔbnk=2nk£®
ÓÖÒòΪÊýÁÐ{bnk}µÄÊ×Ïîbn1=b1=2£¬
¹«±Èq=
=
=3£¬ËùÒÔbnk=2•3k-1£®
ËùÒÔ2nk=2•3k-1£¬¼´nk=3k-1£®
£¨3£©¼ÙÉè´æÔÚÈýÏîar£¬as£¬at³ÉµÈ±ÈÊýÁУ¬Ôòas2=ar•at£¬
¼´ÓÐ(2s+
)2=(2r+
)(2t+
)£¬ÕûÀíµÃ(rt-s2)
=2s-r-t£®
Èôrt-s2¡Ù0£¬Ôò
=
£¬ÒòΪr£¬s£¬t¡ÊN*£¬ËùÒÔ
ÊÇÓÐÀíÊý£¬
ÕâÓë
ΪÎÞÀíÊýì¶Ü£»
Èôrt-s2=0£¬Ôò2s-r-t=0£¬´Ó¶ø¿ÉµÃr=s=t£¬ÕâÓër£¼s£¼tì¶Ü£®
×ÛÉÏ¿ÉÖª£¬²»´æÔÚÂú×ãÌâÒâµÄÈýÏîar£¬as£¬at£®
2 |
2 |
ËùÒÔan=a1+£¨n-1£©d=2n+
2 |
n(a1+an) |
2 |
n(2+
| ||||
2 |
2 |
£¨2£©ÒòΪbn=an-
2 |
ÓÖÒòΪÊýÁÐ{bnk}µÄÊ×Ïîbn1=b1=2£¬
¹«±Èq=
bn2 |
bn1 |
3 |
1 |
ËùÒÔ2nk=2•3k-1£¬¼´nk=3k-1£®
£¨3£©¼ÙÉè´æÔÚÈýÏîar£¬as£¬at³ÉµÈ±ÈÊýÁУ¬Ôòas2=ar•at£¬
¼´ÓÐ(2s+
2 |
2 |
2 |
2 |
Èôrt-s2¡Ù0£¬Ôò
2 |
2s-r-t |
rt-s2 |
2s-r-t |
rt-s2 |
ÕâÓë
2 |
Èôrt-s2=0£¬Ôò2s-r-t=0£¬´Ó¶ø¿ÉµÃr=s=t£¬ÕâÓër£¼s£¼tì¶Ü£®
×ÛÉÏ¿ÉÖª£¬²»´æÔÚÂú×ãÌâÒâµÄÈýÏîar£¬as£¬at£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿