ÌâÄ¿ÄÚÈÝ

¼Ç¹«²îd¡Ù0µÄµÈ²îÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬ÒÑÖªa1=2+
2
£¬S3=12+3
2
£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽan¼°Ç°nÏîºÍSn£»
£¨2£©¼Çbn=an-
2
£¬Èô×ÔÈ»Êýn1£¬n2£¬¡­£¬nk£¬¡­Âú×ã1¡Ün1£¼n2£¼¡­£¼nk£¼¡­£¬²¢ÇÒb n1£¬b n2£¬¡­£¬b nk£¬¡­³ÉµÈ±ÈÊýÁУ¬ÆäÖÐn1=1£¬n2=3£¬Çónk£¨ÓÃk±íʾ£©£»
£¨3£©ÊÔÎÊ£ºÔÚÊýÁÐ{an}ÖÐÊÇ·ñ´æÔÚÈýÏîar£¬as£¬at£¨r£¼s£¼t£¬r£¬s£¬t¡ÊN*£©Ç¡ºÃ³ÉµÈ±ÈÊýÁУ¿Èô´æÔÚ£¬Çó³ö´ËÈýÏÈô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨1£©ÒòΪa1=2+
2
£¬S3=3a1+3d=12+3
2
£¬ËùÒÔd=2£®
ËùÒÔan=a1+£¨n-1£©d=2n+
2
£¬Sn=
n(a1+an)
2
=
n(2+
2
+2n+
2
)
2
=n2+(
2
+1)n
£»
£¨2£©ÒòΪbn=an-
2
=2n£¬ËùÒÔbnk=2nk£®
ÓÖÒòΪÊýÁÐ{bnk}µÄÊ×Ïîbn1=b1=2£¬
¹«±Èq=
bn2
bn1
=
3
1
=3
£¬ËùÒÔbnk=2•3k-1£®
ËùÒÔ2nk=2•3k-1£¬¼´nk=3k-1£®
£¨3£©¼ÙÉè´æÔÚÈýÏîar£¬as£¬at³ÉµÈ±ÈÊýÁУ¬Ôòas2=arat£¬
¼´ÓÐ(2s+
2
)2=(2r+
2
)(2t+
2
)
£¬ÕûÀíµÃ(rt-s2)
2
=2s-r-t
£®
Èôrt-s2¡Ù0£¬Ôò
2
=
2s-r-t
rt-s2
£¬ÒòΪr£¬s£¬t¡ÊN*£¬ËùÒÔ
2s-r-t
rt-s2
ÊÇÓÐÀíÊý£¬
ÕâÓë
2
ΪÎÞÀíÊýì¶Ü£»
Èôrt-s2=0£¬Ôò2s-r-t=0£¬´Ó¶ø¿ÉµÃr=s=t£¬ÕâÓër£¼s£¼tì¶Ü£®
×ÛÉÏ¿ÉÖª£¬²»´æÔÚÂú×ãÌâÒâµÄÈýÏîar£¬as£¬at£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø