题目内容

【题目】等比数列{an}中,a2﹣a1=2,且2a2为3a1和a3的等差中项.
(1)求数列{an}的通项公式;
(2)设bn=2log3an+1,且数列{ }的前n项和为Tn . 求Tn

【答案】
(1)解:设等比数列{an}的公比为q,∵2a2为3a1和a3的等差中项,∴2×2a2=3a1+a3,化为4a1q= ,∴q2﹣4q+3=0,

解得q=1或3.又a2﹣a1=2,∴a1(q﹣1)=2,q≠1,∴

∴an=3n1


(2)解:bn=2log3an+1=2n﹣1,

= =

∴数列{ }的前n项和为Tn=

=

=


【解析】(1)设等比数列{an}的公比为q,由2a2为3a1和a3的等差中项,可得2×2a2=3a1+a3 , 利用等比数列的通项公式代入化简为q2﹣4q+3=0, 解得q.又a2﹣a1=2,a1(q﹣1)=2,q≠1,解出即可得出.(2)bn=2log3an+1=2n﹣1,可得 = = .再利用“裂项求和”方法即可得出.
【考点精析】通过灵活运用数列的前n项和和数列的通项公式,掌握数列{an}的前n项和sn与通项an的关系;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网