题目内容
8.若三角形三边的高的长度分别为2,3,4,则( )A. | 这样的三角形不存在 | |
B. | 这样的三角形存在,且为锐角三角形 | |
C. | 这样的三角形存在,且为直角三角形 | |
D. | 这样的三角形存在,且为钝角三角形 |
分析 设高2,3,4对应三边分别为a,b,c,根据面积相等求出三边之比,利用余弦定理求出cosA的值小于0,即可做出判断.
解答 解:设高2,3,4对应三边分别为a,b,c,
根据面积相等得:$\frac{1}{2}$a•2=$\frac{1}{2}$b•3=$\frac{1}{2}$c•4,
整理得:2a=3b=4c,即a:b:c=6:4:3,
由余弦定理得:cosA=$\frac{{3}^{2}+{4}^{2}-{6}^{2}}{2×3×4}$=-$\frac{11}{24}$<0,
∴A为钝角,即△ABC为钝角三角形,
则这样的三角形存在,且为钝角三角形,
故选:D.
点评 此题考查了余弦定理,以及余弦函数的性质,熟练掌握余弦定理是解本题的关键.
练习册系列答案
相关题目
19.设命题 p:函数f(x)=ex-1在R上为增函数;命题q:函数f(x)=cos(x+π)为奇函数.则下列命题中真命题是( )
A. | p∧q | B. | (¬p)∨q | C. | (¬p)∧(¬q) | D. | p∧(¬q) |
3.如图直角三角形ABC中,|CA|=|CB|,|AB|=3,点E、F分别在CA、CB上,且EF∥AB,AE=$\sqrt{2}$,则$\overrightarrow{AF}$•$\overrightarrow{BE}$=( )
A. | 3 | B. | -3 | C. | 0 | D. | -7 |
3.将函数y=sin(2x-$\frac{π}{3}$)的图象向左移动$\frac{π}{3}$个单位,得到函数y=f(x)的图象,则函数y=f(x)的一个单调递增区间是( )
A. | [-$\frac{π}{4}$,$\frac{π}{4}$] | B. | [-$\frac{π}{2}$,0] | C. | [-$\frac{5π}{12}$,$\frac{π}{12}$] | D. | [$\frac{π}{12}$,$\frac{7π}{12}$] |
4.学校开展阳光体育活动,对学生的锻练时间进行随机抽样调查,从中随机抽取男、女生各25名进行了问卷调查,得到了如下列联表:
(Ⅰ) 根据上表数据求x,y,并据此资料分析:有多大的把握可以认为“锻练时间与性别有关”?
(Ⅱ) 从这50名学生中用分层抽样的方法抽取5人为样本,求从该样本中任取2人,
至少有1人锻练时间少于1小时的概率.
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
锻练时间 | 男生 | 女生 | 合计 |
少于1小时 | 5 | 15 | 20 |
不少于1小时 | 20 | 10 | 30 |
合 计 | 25 | 25 | 50 |
(Ⅱ) 从这50名学生中用分层抽样的方法抽取5人为样本,求从该样本中任取2人,
至少有1人锻练时间少于1小时的概率.
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥K0) | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |