题目内容
已知椭圆C:
的离心率为
,
直线
:y=x+2与原点为圆心,以椭圆C的短轴长为直
径的圆相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点
的直线
与椭圆
交于
,
两点.设直线
的斜率
,在
轴上是否存在点
,使得
是以GH为底边的等腰三角形. 如果存在,求出实数
的取值范围,如果不存在,请说明理由.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240212268834662.jpg)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240212266801089.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021226695412.png)
直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021226711280.png)
径的圆相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021226727644.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021226727314.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021226758313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021226758316.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021226773303.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021226727314.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021226805427.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021226820266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021226820591.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021226836485.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021226851337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240212268834662.jpg)
(Ⅰ)
.
(Ⅱ)存在满足题意的点
(m,0)且实数
的取值范围为:
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021226898688.png)
(Ⅱ)存在满足题意的点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021226914289.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021226851337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021226945703.png)
试题分析:(Ⅰ)利用离心率公式,得到
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021226961562.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021226961453.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021226976319.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021226898688.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021226727314.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021227023575.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021227039424.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021227054666.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021227070484.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021226851337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021227085961.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021226851337.png)
试题解析:(Ⅰ)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240212271171099.png)
∵直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021226711280.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021227148793.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021226961453.png)
故所求椭圆C的方程为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021226898688.png)
(Ⅱ)在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021226820266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021226820591.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021226836485.png)
理由如下:
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021226727314.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021227023575.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021227039424.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240212274131878.png)
因为直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021226727314.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240212274441130.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021227444541.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021227039424.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021227475580.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021227491634.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021227507639.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021227507840.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240212275221209.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021227538894.png)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240212275531024.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240212275691332.png)
由于等腰三角形中线与底边互相垂直,则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021227054666.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021227070484.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240212276161661.png)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240212276311451.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240212276471346.png)
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021227039424.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021227678529.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240212276941112.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240212277091504.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021227085961.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021227741641.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021227475580.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021227756961.png)
所以函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021227741641.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021227787693.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240212278031037.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240212278191000.png)
(若学生用基本不等式求解无证明扣1分)
又因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021227039424.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021227850440.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021227928747.png)
故存在满足题意的点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021226914289.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021226851337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021226945703.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目