题目内容

4.在△ABC中,a=2,b=$\sqrt{2}$,A=45°,则B等于(  )
A.45°B.30°C.60°D.30°或150°

分析 利用正弦定理列出关系式,将a,b及cosA的值代入求出sinB的值,利用特殊角的三角函数值即可求出B的度数.

解答 解:∵A=45°,a=2,b=$\sqrt{2}$,
∴由正弦定理$\frac{a}{sinA}=\frac{b}{sinB}$得:sinB=$\frac{bsinA}{a}$=$\frac{\sqrt{2}×\frac{\sqrt{2}}{2}}{2}$=$\frac{1}{2}$,
∵2>$\sqrt{2}$,即a>b,∴A>B,
则B=30°.
故选:B.

点评 此题考查了正弦定理,特殊角的三角函数值,以及三角形的边角关系,熟练掌握正弦定理是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网